Higher-Order Logic
Specification and Verification with Higher-Order Logic

Arnd Poetzsch-Heffter

Software Technology Group
Fachbereich Informatik
Technische Universität Kaiserslautern

Sommersemester 2010
Introduction

2 Types
 • Motivation
 • Syntax
 • Polymorphism
 • Semantics

3 Terms
 • Syntax
 • Higher-Order Terms
 • Semantics

4 HOL Proof System
 • Formulas and Sequents
 • Axioms and Rules

5 Summary
Overview

Higher-Order Logic
- quantification over predicates, functions and sets
- supports formalisation of arbitrary mathematics

Motivation
- reasoning about hardware and software can require very sophisticated mathematics
- floating point: real numbers and analysis
- correctness of randomised algorithms: probability
Outline

1. Introduction
2. Types
 - Motivation
 - Syntax
 - Polymorphism
 - Semantics
3. Terms
 - Syntax
 - Higher-Order Terms
 - Semantics
4. HOL Proof System
 - Formulas and Sequents
 - Axioms and Rules
5. Summary
Problem: Russell’s Paradox

Russell’s Paradox

Having variables that range over predicates allows to write terms like

\[\Omega \overset{\text{def}}{=} \lambda P. \neg (P P) \]

where \(P \) is a variable. By \(\beta \)-reduction:

\[\Omega \Omega = (\lambda P. \neg (P P)) \Omega = \neg (\Omega \Omega) \]

Conclusion

To avoid this kind of thing types are needed!
Types

Syntax of Types

- type constant: c
- type variable: α
- compound type: $(\sigma_1, \ldots, \sigma_n) \text{op}$
Type Examples

Example (Type Constant)
- **bool**: Booleans
- **num**: natural numbers
- **weekday**: some appropriate user defined type

Example (Compound Types)
- \((\sigma_1, \sigma_2)\) **fun**: functions from \(\sigma_1\) to \(\sigma_2\)
- \((\sigma_1, \sigma_2)\) **prod**: pairs of values
Terminology and Notation

Definition (Type operator)

- ‘op’ in $(\sigma_1, \ldots, \sigma_n)\text{op}$ is called a type constructor

Conventions

- The type $(\sigma_1, \sigma_2)\text{fun}$ is usually written $\sigma_1 \rightarrow \sigma_2$ and
 $\sigma_1 \rightarrow \sigma_2 \rightarrow \cdots \rightarrow \sigma_n = (\sigma_1 \rightarrow (\sigma_2 \rightarrow (\cdots \rightarrow \sigma_n)))$
- The type $(\sigma_1, \sigma_2)\text{prod}$ is usually written $\sigma_1 \times \sigma_2$ or $\sigma_1 \ast \sigma_2$
 and $\sigma_1 \ast \sigma_2 \ast \cdots \ast \sigma_n = (\sigma_1 \ast (\sigma_2 \ast (\cdots \ast \sigma_n)))$
Typing of Terms

- All terms must be well-typed.
- $t : \sigma$ means the term t is well-typed and has type σ.

Variables and Constants

- Variables may have any type: $v : \sigma$
- Constants have a fixed generic type: $c : \sigma$
Assigning Types to Terms

Rules for the Assignment

- function application

\[
\frac{t_1 : \sigma_1 \rightarrow \sigma_2 \quad t_2 : \sigma_1}{(t_1 \ t_2) : \sigma_2}
\]

- abstraction

\[
\frac{x : \sigma_1 \quad t : \sigma_2}{\lambda x. \ t : \sigma_1 \rightarrow \sigma_2}
\]
Example (Polymorphism)

Consider the constant I, defined by:

$$I \equiv \lambda x. x$$

We may want to apply the function I to things of different types:

- $I 7 = 7$ with $I : \text{num} \rightarrow \text{num}$
- $I T = T$ with $I : \text{bool} \rightarrow \text{bool}$

It seems that I must have two different types.
Polymorphism and Generic Types

The types of polymorphic functions such as I contain type variables:

$$I \overset{\text{def}}{=} (\lambda x. x) : \alpha \rightarrow \alpha$$

where α stands for ‘any type’. $\alpha \rightarrow \alpha$ is the generic type of I.

The constant I then has every type obtainable by substituting any type for the variable α in its generic type:

- $I : \text{bool} \rightarrow \text{bool}$
- $I : \text{num} \rightarrow \text{num}$
- $I : (\alpha \rightarrow \text{bool}) \rightarrow (\alpha \rightarrow \text{bool})$
- $I : \alpha \rightarrow \alpha$
Polymorphism Examples

Example (Function Composition)

\[o \overset{\text{def}}{=} \lambda f.\lambda g.\lambda x.f(g(x)) \]

where \(o : (\beta \to \gamma) \to (\alpha \to \beta) \to (\alpha \to \gamma) \)

Example (Equality)

\[= : \alpha \to \alpha \to \text{bool} \]

Example (Apply a Function and Add)

\[\text{app_add} \overset{\text{def}}{=} \lambda f.(\lambda x.f(x) + f(x)) \]

where \(\text{app_add} : (\alpha \to \text{num}) \to (\alpha \to \text{num}) \)
Church’s Simple Theory of Types

Definition (Universe)

- each element \(X \in \mathcal{U} \) is a non-empty set
- if \(X \in \mathcal{U} \) and \(Y \subseteq X \), then \(Y \in \mathcal{U} \).
- if \(X \in \mathcal{U} \) and \(Y \in \mathcal{U} \), then \(X \times Y \in \mathcal{U} \)
- if \(X \in \mathcal{U} \), then powerset \(\mathcal{P}(X) = \{ Y : Y \subseteq X \} \in \mathcal{U} \)
- \(\mathcal{U} \) contains a distinguished infinite set \(I \)
- distinguished element \(ch \in \prod_{X \in \mathcal{U}} X : ch(X) \in X \) witnesses non-emptiness
Definition (Model of Type Structure)

- given: type structure Ω as set of type constants (ν, n)
- model: $M(\nu) : \mathcal{U}^n \rightarrow \mathcal{U}$

Polymorphic Types

- types containing type variables: polymorphic
- meaning of polymorphic types not single set, but set-valued function
Summary of Types

Fact (Types)

Types are introduced to avoid inconsistency.

Types

- Type constants: `bool`, `num`, …
- Type variables: `α`, `β`, `γ`, …
- Compound Types: `(σ₁, ..., σₙ)op` e.g. `σ₁ → σ₂`, and `σ₁ × σ₂`.

Polymorphism

- `twice` $\overset{\text{def}}{=} \lambda f. \lambda x. f(f(x))$
- where `twice` : `(α → α) → (α → α)`
Outline

1. Introduction

2. Types
 - Motivation
 - Syntax
 - Polymorphism
 - Semantics

3. Terms
 - Syntax
 - Higher-Order Terms
 - Semantics

4. HOL Proof System
 - Formulas and Sequents
 - Axioms and Rules

5. Summary
Syntax of Terms

- constants: c
- variables: v
- function applications: $T_1 T_2$
- lambda abstractions $\lambda v. T$
The distinction between a constant and a variable always depends on the context.

Identifiers

$x, y, foo, t', k_2, c_{\text{val}}, \ldots$

Special Symbols

$\exists, \forall, \subseteq, \wedge, \vee, \neg, 1, 2, 3, \ldots, +, \times, =, \ldots$
Function Applications

Notation

\[\langle \text{term}_1 \rangle \langle \text{term}_2 \rangle \]

- denotes the result of applying the function \(\langle \text{term}_1 \rangle \) to the value \(\langle \text{term}_2 \rangle \).

Precedence

- parentheses can be used for grouping

\[f(x), \ f \ (g \ y), \ (f \ x) \ y, \ldots \]

- default precedence

\[f \ x_1 \ x_2 \ \cdots \ x_n = (((f \ x_1) \ x_2) \ \cdots \ x_n) \]
Abstractions

Notation

\[\lambda \langle \text{var} \rangle . \langle \text{term} \rangle \]

- denotes the function \(x \mapsto \text{term}[x/\text{var}] \).

Convention

\[\lambda x_1 \ x_2 \ \cdots \ x_n . \ t = \lambda x_1 . \lambda x_2 . \cdots \lambda x_n . \ t \]

Example (Abstraction)

- \(\lambda x . \ x \): the identity function
- \(\lambda x . \ f(f\ x) \): function that applies \(f \) twice
- \(\lambda f.\lambda g.\lambda x . \ f(g\ x) \): function composition
Free and Bound Variables

Definition (Free Variable)

\[\lambda x. \langle \text{body} \rangle \]

A variable \(x \) is called free in a term if it does not occur inside the body of an abstraction.

Definition (Bound Variables)

If an instance of a variable is not free, it is bound.

Example (Free and Bound Variables)

Consider variable \(x \):

\[(\lambda x. f x)(\lambda y. x) \]
Syntactic Sugar

Infix Applications

Certain constants are written in infix position:

- $t_1 + t_2$ abbreviates $+ t_1 \ t_2$
- $t_1 \times t_2$ abbreviates $\times t_1 \ t_2$
- $t_1 \land t_2$ abbreviates $\land t_1 \ t_2$
Summary of Terms

Terms

Terms may be

- Variables: x, y, a', a_{var}, ϕ_1, ...
- Constants: T, F, ϕ, \exists, $+$, ...
- Applications: $t_1 \ t_2$, $t_1 \ t_2 \ t_3 \ldots \ t_n$
- Abstractions: $\lambda x. t$, $\lambda \ x_1 \ x_2 \ldots \ x_n \cdot t$
Higher-Order Terms

Fact (Higher-Order Terms)
- Variables can range over functions or predicates (i.e. boolean-valued functions)

Example (Higher-Order Term)
- in \(\lambda f.f\ 0 \), the variable \(f \) ranges over functions
- in \(\forall P. P(n) \rightarrow P(n+1) \), \(P \) ranges over predicates
- typical assertion

\[
\forall x f. \exists g. (g\ 0 = x) \land \forall n. g(n+1) = (f\ (g\ n))
\]
Syntactic Sugar

Binders

The quantifiers \forall and \exists are in fact polymorphic constants with types:

- $\forall : (\alpha \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$
- $\exists : (\alpha \rightarrow \mathbb{B}) \rightarrow \mathbb{B}$

They are defined such that for $P : (\alpha \rightarrow \text{bool})$:

- $\forall P$ means $P(x) = T$ for all x
- $\exists P$ means $P(x) = T$ for some x
Hilbert’s Choice Function

Definition (ε-Operator)

\[\varepsilon x. t[x] \]

- with \(x : \sigma \) and \(t[x] \) a term involving \(x \)
- binder of type \((\sigma \rightarrow \mathbb{B}) \rightarrow \sigma \)
- denotes a value of type \(\sigma \)
 - some value of type \(\sigma \), \(v : \sigma \) such that \(t[v] \) is true
 - no such value exists: arbitrary but fixed value of type \(\sigma \)
Examples of ε-Terms

- This term denotes the number 1: $\varepsilon x. 0 < x \land x < 2$
- This term denotes an even number: $\varepsilon x. \exists y. x = 2 \cdot y$
- An unspecified natural number: $\varepsilon x. x + 1 = x$
- The following proposition is true: $(\varepsilon x. x + 3 = 9) = 6$
Standard Signatures

Standard Signature and Intended Interpretation

- standard type structure Ω contains the atomic types B of Boolean values and I of individuals
- \to of type $(B \to B \to B)$
 Intended interpretation: implication
- $=$ of type $(\alpha \to \alpha \to B)$
 Intended interpretation: equality on the set α
- ε of type $((\alpha \to B) \to \alpha)$
 Intended interpretation: Hilbert's choice function.
Standard Logical Constants

Definition of Standard Logical Constants

- **EXISTS** \(\vdash_{\text{def}} \exists = \lambda P. P(\varepsilon P) \)
- **TRUTH** \(\vdash_{\text{def}} \text{true} = ((\lambda x.x) = (\lambda x.x)) \)
- **FORALL** \(\vdash_{\text{def}} \forall = \lambda P. (P = (\lambda x.\text{true})) \)
- **FALSITY** \(\vdash_{\text{def}} \text{false} = \forall x.x \)
- **NEGATION** \(\vdash_{\text{def}} \neg = \lambda x.x \rightarrow \text{false} \)
- **DISJUNCTION** \(\vdash_{\text{def}} \lor = \lambda (x, y). \neg x \rightarrow y \)
- **CONJUNCTION** \(\vdash_{\text{def}} \land = \lambda (x, y). \neg(\neg x \lor \neg y) \)
Formulas

Definition (Formulas in HOL)

- Formulas in HOL are terms of type \mathbb{B}

Example (Formulas in HOL)

- $\forall x. x = 0 \lor \neg (x = 0)$
- true
- $(\lambda x. \neg x)(\forall y. y = y)$
- $\forall x. x = \text{true}$
Sequents

Definition (Sequents in HOL)

A sequent is a pair \((\Gamma, t)\) where
- \(\Gamma\) is a set of formulas (assumptions)
- \(t\) is a formula (conclusion)

A sequent \((\Gamma, t)\) essentially means
- From the formulas in \(\Gamma\), \(t\) can be derived.

Example (Sequents in HOL)

The sequent \((\{x = 3, \forall n. n = n\}, x = 99)\) means

\[\{ x = 3, y = 7, \forall n. n = n \} \vdash x + y = 10\]
Theorem

Definition (Theorems in HOL)

A theorem is a sequent that is either

- an axiom, or
- can be derived from other theorems

Notation

- $\Gamma \vdash t$ or just $\vdash t$ if Γ is empty

Example (HOL Theorems)

- $\vdash \forall x. x = 0 \lor \neg (x = 0)$
- $\vdash \text{true}$
- $\vdash (\lambda x. \neg x)(\forall y. y = y)$
- $\vdash \forall x. x = \text{true}$
Axioms of the HOL Logic

Five Axioms

- \(\vdash \forall b. \ (b = \text{true}) \lor (b = \text{false}) \)
- \(\vdash \forall b_1 \ b_2. \ (b_1 \rightarrow b_2) \rightarrow (b_2 \rightarrow b_1) \rightarrow (b_1 = b_2) \)
- \(\vdash \forall f. \ (\lambda x. \ fx) = f \)
- \(\vdash \forall P \ x. \ P \ x \rightarrow P(\varepsilon P) \)
- \(\vdash \exists f. (\forall x \ y. \ fx = fy \rightarrow x = y) \land (\neg \forall x. \exists y. \ x = f \ y) \)
Inference Rules

Primitive Inference Rules

- **ASSUME**
 \[
 \{ t \} \vdash t
 \]

- **REFL**
 \[
 \vdash t = t
 \]

- **MP**
 \[
 \begin{align*}
 \Gamma_1 \vdash t_1 \rightarrow t_2 & \quad \Gamma_2 \vdash t_1 \\
 \Gamma_1 \cup \Gamma_2 \vdash t_2
 \end{align*}
 \]

- **DISCH**
 \[
 \begin{align*}
 \Gamma \vdash t_2 & \\
 \Gamma - \{ t_1 \} \vdash t_1 \rightarrow t_2
 \end{align*}
 \]

- **ABS**
 \[
 \begin{align*}
 \Gamma \vdash t_1 = t_2 & \\
 \Gamma \vdash (\lambda x. t_1) = (\lambda x. t_2)
 \end{align*}
 \]

(with x not free in Γ)
Inference Rules

Primitive Inference Rules (continued)

- **BETA_CONV**
 \[
 \Gamma \vdash (\lambda x. t_1)t_2 = t_1[t_2/x]
 \]

- **SUBST**
 \[
 \frac{
 \Gamma_1 \vdash t_1 = t_2 \quad \Gamma_2 \vdash t[t_1]
 }{
 \Gamma_1 \cup \Gamma_2 \vdash t[t_2]
 }
 \]

- **INST_TYPE**
 \[
 \frac{
 \Gamma \vdash t
 }{
 \Gamma \vdash t[\sigma_1 \ldots \sigma_n/\alpha_1 \ldots \alpha_n]
 }
 \]
Beta Conversion

Rule for Beta-Conversion

BETA_CONV

\[\vdash (\lambda x. t_1)t_2 = t_1[t_2/x] \]

- \(t_1[t_2/x] \) denotes the result of substituting \(t_2 \) for all free occurrences of \(x \) in \(t_1 \)
- bound variables renamed if necessary so that no free variable in \(t_2 \) becomes bound

Example (Beta Conversion)

- \(\vdash (\lambda x. x + 3)\ 7 = 7 + 3 \)
- \(\vdash (\lambda x. (\forall x. x = \text{true}) \rightarrow x) \ false = (\forall x. x = \text{true}) \rightarrow \text{false} \)
- \(\vdash (\lambda y. \forall x. x = y) \ x = (\forall x'. x' = x) \)
Substitution

Rule for Substitution

\[
\text{SUBST} \quad \frac{\Gamma_1 \vdash t_1 = t_2 \quad \Gamma_2 \vdash t[t_1]}{\Gamma_1 \cup \Gamma_2 \vdash t[t_2]}
\]

- where \(t[t_1] \) is a term with selected free occurrences of \(t_1 \) ‘singled out’ for
- \(t[t_2] \) is the result of replacing those chosen \(t_1 \) by \(t_2 \)
- bound variables are renamed so that variables free in \(t_2 \)
- do not become bound in \(t[t_2] \)
Type Instantiation

Rule for Type Instantiation

\[
\text{INST_TYPE} \quad \frac{\Gamma \vdash t}{\Gamma \vdash t[\sigma_1 \ldots \sigma_n/\alpha_1 \ldots \alpha_n]}
\]

which effects the parallel substitution of types \(\sigma_1 \ldots \sigma_n\) for type variables \(\alpha_1 \ldots \alpha_n\) in \(t\).

Restriction: none of \(\alpha_1 \ldots \alpha_n\) occur in \(\Gamma\).

Example (Type Instantiation)

\[
\vdash I(x : \alpha) = x \quad \vdash I(x : \text{num}) = x
\]
Outline

1 Introduction

2 Types
 - Motivation
 - Syntax
 - Polymorphism
 - Semantics

3 Terms
 - Syntax
 - Higher-Order Terms
 - Semantics

4 HOL Proof System
 - Formulas and Sequents
 - Axioms and Rules

5 Summary
Summary

Higher-Order Logic
- types and terms
- quantification over predicates, functions and sets

HOL Proof System
- five axioms and eight primitive inference rules