Functional Programming
A Brief Introduction to Standard ML

Arnd Poetzsch-Heffter

Software Technology Group
Fachbereich Informatik
Technische Universität Kaiserslautern

Sommersemester 2010
Outline I

1 Overview
 - Functional Programming
 - Standard ML

2 Standard ML in Examples
 - Evaluation and Bindings
 - Operations and Functions
 - Standard Data Types
 - Polymorphism and Type Inference
 - Miscellaneous

3 Cases and Pattern Matching
 - Tuples
 - Case Analysis

4 Data Types
 - Simple Data Types
 - Recursive Data Types
Outline II

5 Modules
 - Structures
 - Signatures
 - Modules in Moscow ML

6 Implementing a Simple Theorem Prover
 - Introduction
 - Basic Data Structures
 - Substitution and Unification

7 Summary
A functional program consists of

- function declarations
- data type declarations
- an expression

Functional Programs

- do not have variables, assignments, statements, loops, ...
- instead:
 - let-expressions
 - recursive functions
 - higher-order functions
Functional Programming

Advantages

- clearer semantics
- corresponds more directly to abstract mathematical objects
- more freedom in implementation
The SML Programming Language

Overview

- functional programming language
- interpreter and compiler available
- strongly typed, with:
 - type inference
 - abstract data types
 - parametric polymorphism
- exception-handling mechanisms

Motivation

- ML is similar to functional core of Isabelle/HOL specification language
- ML is the implementation language of the theorem prover
Outline I

1. Overview
 - Functional Programming
 - Standard ML

2. Standard ML in Examples
 - Evaluation and Bindings
 - Operations and Functions
 - Standard Data Types
 - Polymorphism and Type Inference
 - Miscellaneous

3. Cases and Pattern Matching
 - Tuples
 - Case Analysis

4. Data Types
 - Simple Data Types
 - Recursive Data Types
Outline II

5 Modules
- Structures
- Signatures
- Modules in Moscow ML

6 Implementing a Simple Theorem Prover
- Introduction
- Basic Data Structures
- Substitution and Unification

7 Summary
Example (Evaluation)

\[-2 + 3;\]
\textbf{val} \ it = 5 : \text{int}

\[-\text{rev} \ [1,2,3,4,5];\]
\textbf{val} \ it = [5,4,3,2,1] : \text{int list}

Example (Simple Bindings)

\[-\textbf{val} \ n = 8 \ast 2 + 5;\]
\textbf{val} \ n = 21 : \text{int}

\[-n \ast 2;\]
\textbf{val} \ it = 42 : \text{int}
Example (Special Identifier `it`)

```sml
- it;
val it = 42 : int
```

Example (Multiple Bindings)

```sml
- val one = 1 and two = 2;
val one = 1 : int
val two = 2 : int
```
Local Bindings

Example (Simple Local Binding)

- `val n = 0;`
- `val n = 0 : int`
- `let val n = 12 in n div 6 end;`
- `val it = 2 : int`
- `n;`
- `val it = 0 : int`

Example (Multiple Local Bindings)

- `let val n = 5 val m = 6 in n + m end;`
- `val it = 11 : int`
Booleans

Example (Operations)

- **val** b1 = true **and** b2 = false;

val b1 = true : bool

val b2 = false : bool

- 1 = (1 + 1);

val it = false : bool

- not (b1 **orelse** b2);

val it = false : bool

- (7 < 3) **andalso** (false **orelse** 2 > 0);

val it = false : bool
Integers

Example (Operations)

- \textbf{val} \ n = 2 + (3 \times 4);
 \textbf{val} \ n = 14 : \text{int}

- \textbf{val} \ n = (10 \div 2) - 7;
 \textbf{val} \ n = \sim 2 : \text{int}
Applying Functions

General Rules

- type of functions from σ_1 to σ_2 is $\sigma_1 \rightarrow \sigma_2$
- application $f \ x$ applies function f to argument x
- call-by-value (obvious!)
- left associative: $m \ n \ o \ p = (((m \ n) o) p)$
Defining Functions

Example (One Argument)

```sml
fun f n = n + 2;
val f = fn : int ➔ int

f 22;
val it = 24 : int
```

Example (Two or More Arguments)

```sml
fun plus n (m:int) = n + m;
val plus = fn : int ➔ int ➔ int

plus 2 3;
val it = 5 : int
```
Currying

Example (Curried Addition)

- `fun` plus n (m:int) = n + m;
- `val` plus = `fn` : int -> int -> int
- `plus` 1 2;
- `val` it = 3 : int

Example (Partial Application)

- `val` inc = `plus` 1;
- `val` inc = `fn` : int -> int
- `inc` 7;
- `val` it = 8 : int
Higher-Order Functions

Example (Higher-Order Functions)

```sml
fun foo f n = (f(n+1)) div 2 ;
val foo = fn : ( int -> int ) -> int -> int

foo inc 3;
val it = 2 : int
```
Recursive Functions

Example (Defining Recursive Functions)

```sml
− fun f n = if (n=0) then 1 else n * f(n-1);
val f = fn : int -> int

− f 3;
val it = 6 : int

− fun member x [] = false |
     member x (h::t) = (x=h) orelse (member x t);
val member = fn : 'a -> 'a list -> bool

− member 3 [1,2,3,4];
val it = true : bool
```
Example (The Increment Function)

- \(\text{fn } x \mapsto x + 1; \)
 \[\text{val } \text{it } = \text{fn} : \text{ int } \rightarrow \text{ int} \]

- \((\text{fn } x \mapsto x + 1) \ 2; \)
 \[\text{val } \text{it } = 3 : \text{ int} \]
Example (Curried Multiplication)

\[
\begin{align*}
\text{val} & \quad \text{it} = \text{fn} : \text{int} \rightarrow \text{int} \rightarrow \text{int} \\
\text{val} & \quad \text{double} = (\text{fn} \ x \Rightarrow \text{fn} \ y \Rightarrow x \ast (y : \text{int})) \ 2; \\
\text{val} & \quad \text{double} = \text{fn} : \text{int} \rightarrow \text{int} \\
\text{val} & \quad \text{it} = 22; \\
\text{val} & \quad \text{it} = 44 : \text{int}
\end{align*}
\]
Clausal Definitions

Example (Fibonacci)

fun fib 0 = 1
| fib 1 = 1
| fib n = fib (n−1) + fib(n−2);
Exceptions

Example (Failure)

- `hd []`; uncaught `exception Hd`
- `1 div 0`; uncaught `exception Div`
User-Defined Exceptions

Example (Explicitly Generating Failure)

```sml
- exception negative_argument_to_fact;
exception negative_argument_to_fact

- fun fact n = if (n<0) then raise negative_argument_to_fact
    else if (n=0) then 1 else n * fact (n-1);

val fact = fn : int -> int

- fact (~1);
uncaught exception negative_argument_to_fact
```

Example (Exception Handling)

```sml
- (fact (~1)) handle negative_argument_to_fact => 0;

val it = 0 : int
```
Example (Unit)

- ();
 \textbf{val} \text{it} = () : unit

- \texttt{close_theory};
\textbf{val} \text{it} = \textbf{fn} : \text{unit} \rightarrow \text{unit}
Character Strings

Example (String Operations)

- "abc``;
 val it = "abc" : string

- chr;
 val it = fn : int → string

- chr 97;
 val it = "a" : string
List Constructors

Example (Empty Lists)

- `null l ;`

  ```ml
  val it = false : bool
  ```

- `null [] ;`

  ```ml
  val it = true : bool
  ```

Example (Construction and Concatenation)

- `9 :: l ;`

  ```ml
  val it = [9,2,3,5] : int list
  ```

- `[true, false] @ [false, true] ;`

  ```ml
  val it = [true, false, false, true] : bool list
  ```
List Operations

Example (Head and Tail)

- `val l = [2,3,2+3];`
- `val l = [2,3,5] : int list`

- `hd l;`
- `val it = 2 : int`

- `tl l;`
- `val it = [3,5] : int list`
Pattern Matching

Example (Pattern Matching and Lists)

- **fun** bigand [] = true

 | bigand (h::t) = h **andalso** bigand t;

val bigand = **fn** : bool list → bool
Example (Pair Functions)

- `val p = (2,3);`
 `val p = (2,3) : int * int`

- `fst p;`
 `val it = 2 : int`

- `snd p;`
 `val it = 3 : int`
Records

Example (Date Record)

```sml
val date = {day=4, month="february", year=1967} : {day:int, month:string, year:int }

val {day=d, month=m, year=y} = date;
val d = 4 : int
val m = "february" : string
val y = 1967 : int

#month date;
val it = "february" : string
```
Polymorphism

Example (Head Function)

- hd [2,3];
 val it = 2 : int

- hd [true, false];
 val it = true : bool

Problem

What is the type of hd?

\[\text{int list} \rightarrow \text{int} \quad \text{or} \quad \text{bool list} \rightarrow \text{bool} \]
Example (Type of Head Function)

```ml
val it = fn : 'a list -> 'a
```

Example (Polymorphic Head Function)

- head function has both types
- 'a is a type variable.
- hd can have any type of the form \(\sigma \) list \(\rightarrow \sigma \)
 (where \(\sigma \) is an SML type)
Type Inference

Example (Mapping Function)

```sml
fun map f l = 
  if (null l) 
    then [] 
  else f(hd l) :: (map f (tl l));
val map = fn : ('a -> 'b) -> 'a list -> 'b list

val it = fn : 'a list -> int list
```

Fact (ML Type Inference)

SML infers the most general type.
Standard List Operations

Example (Mapping)

```sml
fun map f [] = []
  | map f (h::t) = f h :: map f t;
val ('a, 'b) map = fn : ('a => 'b) => 'a list => 'b list
```

Example (Filtering)

```sml
fun filter P [] = []
  | filter P (h::t) = if P h then h:: filter P t
                   else filter P t;
val 'a filter = fn : ('a => bool) => 'a list => 'a list
```
Type Inference

Example (Function Composition)

```sml
fun comp f g x = f(g x);
val comp = fn:('a -> 'b) -> ('c -> 'a) -> 'c -> 'b

val it = fn : int list -> bool
```

Arnd Poetzsch-Heffter (Software Technology Group)
Functional Programming
Sommersemester 2010 35 / 101
Some System Functions

Example (Load a file called file.sml)

```sml
use;
val it = fn : string -> unit

use "file.sml";
[opening file.sml]
...
```

Key Commands

- terminate the session: <Ctrl> D
- interrupt: <Ctrl> C
Outline I

1. Overview
 - Functional Programming
 - Standard ML

2. Standard ML in Examples
 - Evaluation and Bindings
 - Operations and Functions
 - Standard Data Types
 - Polymorphism and Type Inference
 - Miscellaneous

3. Cases and Pattern Matching
 - Tuples
 - Case Analysis

4. Data Types
 - Simple Data Types
 - Recursive Data Types
Outline II

5 Modules
- Structures
- Signatures
- Modules in Moscow ML

6 Implementing a Simple Theorem Prover
- Introduction
- Basic Data Structures
- Substitution and Unification

7 Summary
Example (Tuples)

- `val pair = (2,3);`
 > `val pair = (2, 3) : int * int`

- `val triple = (2,2.0, "2");`
 > `val triple = (2, 2.0, "2") : int * real * string`

- `val pairs_of_pairs = ((2,3),(2.0,3.0));`
 > `val pairs_of_pairs = ((2, 3), (2.0, 3.0)) : (int * int) * (real * real)`

Example (Unit Type)

- `val null_tuple = ();`
 > `val null_tuple = () : unit`
Accessing Components

Example (Navigating to the Position)

- `val xy1 = #1 pairs_of_pairs;`
- `val xy1 = (2, 3) : int * int`

- `val y1 = #2 (#1 pairs_of_pairs);`
- `val y1 = 3 : int`

Example (Using Pattern Matching)

- `val ((x1,y1),(x2,y2)) = pairs_of_pairs;`
- `val x1 = 2 : int`
 - `val y1 = 3 : int`
 - `val x2 = 2.0 : real`
 - `val y2 = 3.0 : real`
Example (Granularity)

- `val ((x1,y1),xy2) = pairs_of_pairs;`
 > `val x1 = 2 : int`
 > `val y1 = 3 : int`
 > `val xy2 = (2.0, 3.0) : real * real`

Example (Wildcard Pattern)

- `val ((_,y1),(_:,_)) = pairs_of_pairs;`
 > `val y1 = 3 : int`

- `val ((_,y1),_) = pairs_of_pairs;`
 > `val y1 = 3 : int`
Pattern Matching

Example (Value Patterns)

- `val 0 = 1 - 1;`

- `val (0, x) = (1 - 1, 34);`

> `val x = 34 : int`

- `val (0, x) = (2 - 1, 34);`

! Uncaught `exception: Bind`
General Rules

The variable binding `val var = val` is irreducible.

The wildcard binding `val _ = val` is discarded.

The tuple binding `val(pat1, ... , patN) = (val1, ... , valN)` is reduced to

```
val pat1 = valN
...
val patN = valN
```
Clausal Function Expressions

Example (Clausal Function Expressions)

```ml
fun not true = false |
    not false = true;
val not = fn : bool -> bool
```
Cases and Pattern Matching

Case Analysis

Redundant Cases

Example (Redundant Cases)

```plaintext
  - fun not True = false  
    | not False = true;  
  ! Warning: some cases are unused in this match.  
> val 'a not = fn : 'a -> bool

  - not false;  
> val it = false : bool
  - not 3;  
> val it = false : bool
```

Fact (Redundant Cases)

Redundant cases are always a mistake!
Inexhaustive Matches

Example (Inexhaustive Matches)

```haskell
fun first_ten 0 = true |
  first_ten 1 = true |
  first_ten 2 = true |
  first_ten 3 = true |
  first_ten 4 = true |
  first_ten 5 = true |
  first_ten 6 = true |
  first_ten 7 = true |
  first_ten 8 = true |
  first_ten 9 = true;

! Warning: pattern matching is not exhaustive
```

```haskell
> val first_ten = fn : int -> bool
    first_ten 5;
> val it = true : bool
    first_ten ~1;
! Uncaought exception: Match
```

Fact (Inexhaustive Matches)

Inexhaustive matches may be a problem.
Catch-All Clauses

Example (Catch-All Clauses)

```haskell
fun first_ten 0 = true | first_ten 1 = true | first_ten 2 = true
| first_ten 3 = true | first_ten 4 = true | first_ten 5 = true
| first_ten 6 = true | first_ten 7 = true | first_ten 8 = true
| first_ten 9 = true | first_ten _ = false ;
> val first_ten = fn : int → bool
```
Overlapping Cases

Example (Overlapping Cases)

```haskell
-- fun foo1 1 _ = 1
  | foo1 _ 1 = 2
  | foo1 _ _ = 0;
> val foo1 = fn : int -> int -> int
-- fun foo2 _ 1 = 1
  | foo2 1 _ = 2
  | foo2 _ _ = 0;
> val foo2 = fn : int -> int -> int

-- foo1 1 1;
> val it = 1 : int
-- foo2 1 1;
> val it = 1 : int
```
Recursively Defined Functions

Example (Recursively Defined Function)

- `fun` factorial 0 = 1
 | factorial n = n * factorial (n−1);
> `val` factorial = `fn` : int −> int

- `val` rec factorial = `fn`

Example (Recursively Defined Lambda Abstraction)

- `val` rec factorial = `fn` 0 => 1
 | n => n * factorial (n−1);
Example (Mutual Recursion)

```ml
fun even 0 = true |
  even n = odd (n-1)
and odd 0 = false |
  odd n = even (n-1);
val even = fn : int -> bool
val odd = fn : int -> bool

(even 5, odd 5);
val it = (false, true) : bool * bool
```
Outline I

1. Overview
 - Functional Programming
 - Standard ML

2. Standard ML in Examples
 - Evaluation and Bindings
 - Operations and Functions
 - Standard Data Types
 - Polymorphism and Type Inference
 - Miscellaneous

3. Cases and Pattern Matching
 - Tuples
 - Case Analysis

4. Data Types
 - Simple Data Types
 - Recursive Data Types
Outline II

5 Modules
- Structures
- Signatures
- Modules in Moscow ML

6 Implementing a Simple Theorem Prover
- Introduction
- Basic Data Structures
- Substitution and Unification

7 Summary
Type Abbreviations

Type Keyword

- type abbreviations
- record definitions

Example (Type Abbreviation)

- `type` boolPair = bool × bool;
- `type` boolPair = bool × bool

- `val` it = (true, true) : bool × bool
Defining a Record Type

Example (Record)

- **type** hyperlink =

  ```
  { protocol : string , address : string , display : string };
  > **type** hyperlink = {address : string , display : string , protocol : string }
  ```

- **val** hol_webpage = {
 protocol="http",
 address="rsg.informatik.uni-kl.de/teaching/hol",
 display="HOL-Course" ;

 > **val** hol_webpage = {
 address = "rsg.informatik.uni-kl.de/teaching/hol",
 display = "HOL-Course",
 protocol = "http"}
 :
 {address : string , display : string , protocol : string }
Accessing Record Components

Example (Type Abbreviation)

- `val {protocol=p, display=d, address=a } = hol_webpage;
 > val p = "http" : string
 val d = "HOL—Course" : string
 val a = "rsg.informatik.uni—kl.de/teaching/hol" : string

- `val {protocol=_, display=_, address=a } = hol_webpage;
 > val a = "rsg.informatik.uni—kl.de/teaching/hol" : string

- `val {address=a, ...} = hol_webpage;
 > val a = "rsg.informatik.uni—kl.de/teaching/hol" : string

- `val {address, ...} = hol_webpage;
 > val address = "rsg.informatik.uni—kl.de/teaching/hol" : string`
Defining *Really* New Data Types

datatype Keyword

programmer-defined (recursive) data types, introduces
- one or more new type constructors
- one or more new value constructors
Non-Recursive Data Type

Example (Non-Recursive Datatype)

```plaintext
datatype threeval = TT | UU | FF;

datatype threeval =
  (threeval ,{con FF : threeval , con TT : threeval , con UU : threeval})
con FF = FF : threeval
con TT = TT : threeval
con UU = UU : threeval

fun not3 TT = FF
  | not3 UU = UU
  | not3 FF = TT;

val not3 = fn : threeval —> threeval

not3 TT;
val it = FF : threeval
```
Data Types

Parameterised Non-Recursive Data Types

Example (Option Type)

- **datatype** 'a option = NONE | SOME of 'a;

> New type names: =option

 datatype 'a option =
 ('a option ,{ con 'a NONE : 'a option, con 'a SOME : 'a → 'a option})

 con 'a NONE = NONE : 'a option
 con 'a SOME = fn : 'a → 'a option

- constant NONE

- values of the form SOME v (where v has the type 'a)
Example (Option Type)

- `fun reciprocal 0.0 = NONE
 | reciprocal x = SOME (1.0/x)
> val reciprocal = fn : real → real option

- `fun inv_reciprocal NONE = 0.0
 | inv_reciprocal (SOME x) = 1.0/x;
> val inv_reciprocal = fn : real option → real
- `fun identity x = inv_reciprocal (reciprocal x);
> val identity = fn : real → real

- identity 42.0;
> val it = 42.0 : real
- identity 0.0;
> val it = 0.0 : real
Recursive Data Types

Example (Binary Tree)

```plaintext
− datatype 'a tree =
  Empty |
Node of 'a tree * 'a * 'a tree;
> New type names: =tree
    datatype 'a tree =
      ('a tree,
       {con 'a Empty : 'a tree,
         con 'a Node : 'a tree * 'a * 'a tree −> 'a tree})
    con 'a Empty = Empty : 'a tree
    con 'a Node = fn : 'a tree * 'a * 'a tree −> 'a tree
```

- Empty is an empty binary tree
- \((\text{Node} \ (t_1, v, t_2))\) is a tree if \(t_1\) and \(t_2\) are trees and \(v\) has the type \('a\)
- nothing else is a binary tree
Functions and Recursive Data Types

Example (Binary Tree)

```haskell
fun treeHeight Empty = 0
| treeHeight (Node (leftSubtree, _, rightSubtree)) =
  1 + max(treeHeight leftSubtree, treeHeight rightSubtree);
val 'a treeHeight = fn : 'a tree -> int
```
Mutually Recursive Datatypes

Example (Binary Tree)

```
datatype 'a tree =
    Empty |
    Node of 'a * 'a forest
and 'a forest =
    None |
    Tree of 'a tree * 'a forest ;
> New type names: =forest, =tree
...```

Arnd Poetzsch-Heffter ( Software Technology Group)
Abstract Syntax

Example (Defining Expressions)

```haskell
-- datatype expr =
 Numeral of int |
 Plus of expr * expr |
 Times of expr * expr;
> New type names: =expr
 datatype expr =
 (expr,
 {con Numeral : int -> expr,
 con Plus : expr * expr -> expr,
 con Times : expr * expr -> expr})
 con Numeral = fn : int -> expr
 con Plus = fn : expr * expr -> expr
 con Times = fn : expr * expr -> expr
```
Abstract Syntax

Example (Evaluating Expressions)

- fun eval (Numeral n) = Numeral n
  | eval (Plus(e1,e2)) = 
    let val Numeral n1 = eval e1
    val Numeral n2 = eval e2 in
    Numeral(n1+n2) end
  | eval (Times (e1,e2)) = 
    let val Numeral n1 = eval e1
    val Numeral n2 = eval e2 in
    Numeral(n1*n2) end;
> val eval = fn : expr -> expr

- eval( Plus( Numeral 2, Times( Numeral 5, Numeral 8 ) ) );
> val it = Numeral 42 : expr
Outline I

1. Overview
   - Functional Programming
   - Standard ML

2. Standard ML in Examples
   - Evaluation and Bindings
   - Operations and Functions
   - Standard Data Types
   - Polymorphism and Type Inference
   - Miscellaneous

3. Cases and Pattern Matching
   - Tuples
   - Case Analysis

4. Data Types
   - Simple Data Types
   - Recursive Data Types
 Modules

- Structures
- Signatures
- Modules in Moscow ML

Implementing a Simple Theorem Prover

- Introduction
- Basic Data Structures
- Substitution and Unification

Summary
Structuring ML Programs

**Modules**

- structuring programs into separate units
- program units in ML: *structures*
- contain a collection of types, exceptions and values (incl. functions)
- parameterised units possible
- composition of structures mediated by *signatures*
**Purpose**

- structures = implementation

**Example (Structure)**

```ocaml
structure Queue =
struct
 type 'a queue = 'a list * 'a list
 val empty = (nil, nil)
 fun insert (x, (bs, fs)) = (x :: bs, fs)
 exception Empty
 fun remove (nil, nil) = raise Empty
 | remove (bs, f :: fs) = (f, (bs, fs))
 | remove (bs, nil) = remove (nil, rev bs)
end
```

Arnd Poetzsch-Heffter (Software Technology Group, Technische Universität Kaiserslautern)
**Identifier Scope**

- components of a structure: local scope
- must be accessed by qualified names

**Example (Accessing Structure Components)**

- `Queue.empty;`
  ```haskell
 > val ('a, 'b) it = ([], []) : 'a list * 'b list
  ```
- `open Queue;`
  ```haskell
 > ...
  ```
- `empty;`
  ```haskell
 > val ('a, 'b) it = ([], []) : 'a list * 'b list
  ```
Accessing Structure Components

Usage of `open`

- open a structure to incorporate its bindings directly
- cannot open two structures with components that share a common names
- prefer to use open in `let` and `local` blocks
Signatures

Purpose

- signatures = interface

Example (Signature)

```ocaml
signature QUEUE =
 sig
 type 'a queue
 exception Empty
 val empty : 'a queue
 val insert : 'a * 'a queue -> 'a queue
 val remove: 'a queue -> 'q * 'a queue
 end
```
Signature Ascription

### Transparent Ascription
- descriptive ascription
- extract principal signature
  - always existing for well-formed structures
  - most specific description
  - everything needed for type checking
- source code needed

### Opaque Ascription
- restrictive ascription
- enforce data abstraction
Opaque Ascription

Example (Opaque Ascription)

```ml
structure Queue :> QUEUE
struct
 type 'a queue = 'a list * 'a list
 val empty = (nil, nil)
 fun insert (x, (bs, fs)) = (x :: bs, fs)
exception Empty
fun remove (nil, nil) = raise Empty
| remove (bs, f :: fs) = (f, (bs, fs))
| remove (bs, nil) = remove (nil, rev bs)
end
```
Signature Matching

Conditions

- structure may provide more components
- structure may provide more general types than required
- structure may provide a concrete datatype instead of a type
- declarations in any order
Module Compilation in Moscow ML

**Compiler mosmlc**

- save structure Foo to file `Foo.sml`
- compile module: `mosmlc Foo.sml`
- compiled interface in `Foo.ui` and compiled bytecode `Foo.uo`
- load module `load "Foo.ui"

```ml
val it = () : unit

open Queue;
> type 'a queue = 'a list * 'a list
 val ('a, 'b) insert = fn : 'a * ('a list * 'b) -> 'a list * 'b
 exn Empty = Empty : exn
 val ('a, 'b) empty = ([], []) : 'a list * 'b list
 val 'a remove = fn : 'a list * 'a list -> 'a * ('a list * 'a list)
```

Arnd Poetzsch-Heffter (Software Technology Group)
Outline I

1. Overview
   - Functional Programming
   - Standard ML

2. Standard ML in Examples
   - Evaluation and Bindings
   - Operations and Functions
   - Standard Data Types
   - Polymorphism and Type Inference
   - Miscellaneous

3. Cases and Pattern Matching
   - Tuples
   - Case Analysis

4. Data Types
   - Simple Data Types
   - Recursive Data Types
Outline II

5 Modules
- Structures
- Signatures
- Modules in Moscow ML

6 Implementing a Simple Theorem Prover
- Introduction
- Basic Data Structures
- Substitution and Unification

7 Summary
Overview

Theorem Prover
- theorem prover implements a proof system
- used for proof checking and automated theorem proving

Goals
- build your own theorem prover for propositional logic
- understanding the fundamental structure of a theorem prover
Data Types

Data Types of a Theorem Prover

- formulas, terms and types
- axioms and theorems
- deduction rules
- proofs
Formulas, Terms and Types

Propositional Logic

- each term is a formula
- each term has the type $\mathbb{B}$

Data Type Definition

```ml
datatype Term =
 Variable of string |
 Constant of bool |
 Negation of Term |
 Conjunction of Term * Term |
 Disjunction of Term * Term |
 Implication of Term * Term;
```

Arnd Poetzsch-Heffter (Software Technology Group) Functional Programming Sommersemester 2010 80 / 101
Determining the Topmost Operator

```haskell
fun isVar (Variable x) = true
 | isVar _ = false;
fun isConst (Constant b) = true
 | isConst _ = false;
fun isNeg (Negation t1) = true
 | isNeg _ = false;
fun isCon (Conjunction (t1, t2)) = true
 | isCon _ = false;
fun isDis (Disjunction (t1, t2)) = true
 | isDis _ = false;
fun isImp (Implication (t1, t2)) = true
 | isImp _ = false;
```
Syntactical Operations on Terms

Composition

- combine several subterms with an operator to a new one

Composition of Terms

```haskell
fun mkVar s1 = Variable s1;
fun mkConst b1 = Constant b1;
fun mkNeg t1 = Negation t1;
fun mkCon (t1,t2) = Conjunction(t1,t2);
fun mkDis (t1,t2) = Disjunction(t1,t2);
fun mkImp (t1,t2) = Implication(t1,t2);
```
Syntactical Operations on Terms

Decomposition

- decompose a term

Decomposition of Terms

```ml
exception SyntaxError;

fun destNeg (Negation t1) = t1
 | destNeg _ = raise SyntaxError ;
fun destCon (Conjunction (t1,t2)) = (t1,t2)
 | destCon _ = raise SyntaxError ;
fun destDis (Disjunction (t1,t2)) = (t1,t2)
 | destDis _ = raise SyntaxError ;
fun destImp (Implication (t1,t2)) = (t1,t2)
 | destImp _ = raise SyntaxError ;
```
Term Examples

Example (Terms)

- $t_1 = a \land b \lor \neg c$
- $t_2 = true \land (x \land y) \lor \neg z$
- $t_3 = \neg ((a \lor b) \land \neg c)$

val t1 = Disjunction(Conjunction(Variable "a",Variable "b" ),
                      Negation(Variable "c" ) );

val t2 = Disjunction(
    Conjunction( Constant true,
                     Conjunction (Variable "x",Variable "y" ),
                     Negation(Variable "z" ) ),

val t3 = Negation(Conjunction(
    Disjunction(Variable "a",Variable "b" ),
    Negation(Variable "c" )));
Theorems

Data Type Definition

```
datatype Theorem =
 Theorem of Term list * Term;
```

Syntactical Operations

```
fun assumptions (Theorem (assums,concl)) = assums;
fun conclusion (Theorem (assums,concl)) = concl;
fun mkTheorem(assums,concl) = Theorem(assums,concl);
fun destTheorem (Theorem (assums,concl)) = (assums,concl);
```
Rules

Data Type Definition

```haskell
datatype Rule =
 Rule of Theorem list ∗ Theorem;
```

Arnd Poetzsch-Heffter (Software Technology Group)
Application of Rules

- form a new theorem from several other theorems

Application (Version 1)

```plaintext
exception DeductionError;

fun applyRule rule thms =
 let
 val Rule (prem, concl) = rule
 in
 if prem = thms then concl else raise DeductionError end;
```
Application of Rules

- premises and given theorems do not need to be identical
- premises only need to be in the given theorems

Application (Version 2)

```haskell
fun mem x [] = false
 | mem x (h::t) = (x=h) orelse (contains t x);
fun sublist [] l2 = true
 | sublist (h1::t1) l2 = (contains l2 h1) andalso (sublist t1 l2);
fun applyRule rule thms =
 let
 val Rule (prem,concl) = rule
 in
 if sublist prem thms then concl else raise DeductionError end;
```
Example (Rule Application)

```
val axiom1 = Theorem([], (Variable "a"));
val axiom2 = Theorem([], Implication((Variable "a"), (Variable "b")));
val axiom3 = Theorem([], Implication((Variable "b"), (Variable "c")));

val modusPonens =
 Rule(
 [Theorem([], Implication((Variable "a"), (Variable "b"))),
 Theorem([], (Variable "a"))]
 ,
 Theorem([], (Variable "b"))
);
```
Example (Rule Application)

```hs
val thm1 = applyRule modusPonens [axiom1,axiom2];
val thm2 = applyRule modusPonens [thm1,axiom3];
```

Problem

- axioms and rules should work for arbitrary variables
- axiom scheme, rule scheme
- definition of substitution and unification needed
Support Functions

fun insert x l = if mem x l then l else x :: l;

fun assoc [] a = NONE
   | assoc ((x,y):: t) a = if (x=a) then SOME y else assoc t a;

fun occurs v (w as Variable _) = (v=w)
   | occurs v (Constant b) = false
   | occurs v (Negation t) = occurs v t
   | occurs v (Conjunction (t1,t2)) = occurs v t1 orelse occurs v t2
   | occurs v (Disjunction (t1,t2)) = occurs v t1 orelse occurs v t2
   | occurs v (Implication (t1,t2)) = occurs v t1 orelse occurs v t2;
Substitution

fun subst theta (v as Variable _) =
  (case assoc theta v of NONE => v | SOME w => w)

| subst theta (Constant b) = Constant b
| subst theta (Negation t) = Negation(subst theta t)
| subst theta (Conjunction (t1,t2 )) =
  Conjunction(subst theta t1, subst theta t2)
| subst theta (Disjunction (t1,t2 )) =
  Disjunction(subst theta t1, subst theta t2)
| subst theta (Implication (t1,t2 )) =
  Implication (subst theta t1, subst theta t2);
Example (Substitution)

```haskell
val theta1 = [(Variable "a", Variable "b"),(Variable "b", Constant true)];
```
Implementing a Theorem Prover

Substitution and Unification

Unification

Definition (Matching)
A term matches another if the latter can be obtained by instantiating the former.

\[ \text{matches}(M, N) \iff \exists \theta. \text{subst}(\theta, M) = N \]

Definition (Unifier, Unifiability)
A substitution is a unifier of two terms, if it makes them equal.

\[ \text{unifier}(\theta, M, N) \iff \text{subst}(\theta, M) = \text{subst}(\theta, N) \]

Two terms are unifiable if they have a unifier.

\[ \text{unifiable}(M, N) \iff \exists \theta. \text{unifier}(\theta, M, N) \]
Unification Algorithm

General Idea

- traverse two terms in exactly the same way
- eliminating as much common structure as possible
- things actually happen when a variable is encountered (in either term)
- when a variable is encountered, make a binding with the corresponding subterm in the other term, and substitute through
- important: making a binding \((x, M)\) where \(x\) occurs in \(M\) must be disallowed since the resulting substitution will not be a unifier
Unification Algorithm

Unification

```ml
exception UnificationException;

fun unifyl [] [] theta = theta
 | unifyl ((v as Variable _)::L) (M::R) theta =
 if v=M then unifyl L R theta
 else if occurs v M then raise UnificationException
 else unifyl (map (subst [(v,M)]) L)
 (map (subst [(v,M)]) R)
 (combineSubst [(v,M)] theta)
 | unifyl L1 (L2 as (Variable _::_)) theta = unifyl L2 L1 theta
...
```
Implementing a Theorem Prover
Substitution and Unification

Unification Algorithm

Unification

...  
| unifyl (Negation tl :: L) (Negation tr :: R) theta =
  unifyl ( tl :: L) ( tr :: R) theta
| unifyl (Conjunction (tl1 , tl2 ):: L) (Conjunction (tr1 , tr2 ):: R) theta =
  unifyl ( tl1 :: tl2 :: L) ( tr1 :: tr2 :: R) theta
| unifyl (Disjunction ( tl1 , tl2 ):: L) (Disjunction ( tr1 , tr2 ):: R) theta =
  unifyl ( tl1 :: tl2 :: L) ( tr1 :: tr2 :: R) theta
| unifyl ( Implication ( tl1 , tl2 ):: L) ( Implication ( tr1 , tr2 ):: R) theta =
  unifyl ( tl1 :: tl2 :: L) ( tr1 :: tr2 :: R) theta
| unifyl _ _ _ = raise UnificationException;

fun unify M N = unifyl [M] [N] [];
Combining Substitutions

**fun** combineSubst theta sigma =

```
let val (dsigma,rsigma) = ListPair.unzip sigma
val sigma1 = ListPair.zip(dsigma,(map (subst theta) rsigma))
val sigma2 = List. filter (op <>) sigma1
val theta1 = List. filter (fn (a,_) => not (mem a dsigma)) theta
in
 sigma2 @ theta1
end;
```
Outline I

1 Overview
   - Functional Programming
   - Standard ML

2 Standard ML in Examples
   - Evaluation and Bindings
   - Operations and Functions
   - Standard Data Types
   - Polymorphism and Type Inference
   - Miscellaneous

3 Cases and Pattern Matching
   - Tuples
   - Case Analysis

4 Data Types
   - Simple Data Types
   - Recursive Data Types
Outline II

5 Modules
- Structures
- Signatures
- Modules in Moscow ML

6 Implementing a Simple Theorem Prover
- Introduction
- Basic Data Structures
- Substitution and Unification

7 Summary
## Summary

- **programming in Standard ML**
  - evaluation and bindings
  - defining functions
  - standard data types
  - type inference
  - case analysis and pattern matching
  - data type definitions
  - modules

- **primitive theorem prover kernel**
  - terms
  - theorems
  - rules
  - substitution
  - unification