Higher-Order Logic
Specification and Verification with Higher-Order Logic

Arnd Poetzsch-Heffter
(Slides by Jens Brandt)

Software Technology Group
Fachbereich Informatik
Technische Universität Kaiserslautern

Sommersemester 2008
Outline

1 Introduction

2 Types
 - Motivation
 - Syntax
 - Polymorphism
 - Semantics

3 Terms
 - Syntax
 - Higher-Order Terms
 - Semantics

4 HOL Proof System
 - Formulas and Sequents
 - Axioms and Rules

5 Summary
Higher-Order Logic

- quantification over predicates, functions and sets
- supports formalisation of arbitrary mathematics

Motivation

- reasoning about hardware and software can require very sophisticated mathematics
- floating point: real numbers and analysis
- correctness of randomised algorithms: probability
Outline

1 Introduction

2 Types
 - Motivation
 - Syntax
 - Polymorphism
 - Semantics

3 Terms
 - Syntax
 - Higher-Order Terms
 - Semantics

4 HOL Proof System
 - Formulas and Sequents
 - Axioms and Rules

5 Summary
Problem: Russell’s Paradox

Russel’s Paradox

Having variables that range over predicates allows to write terms like

$$\Omega \overset{\text{def}}{=} \lambda P. \neg (P P)$$

where P is a variable. By β-reduction:

$$\Omega \Omega = (\lambda P. \neg (P P)) \Omega = \neg (\Omega \Omega)$$

Conclusion

To avoid this kind of thing types are needed!
Types

Syntax of Types

- type constant: c
- type variable: α
- compound type: $(\sigma_1, \ldots, \sigma_n) o p$
Type Examples

Example (Type Constant)
- \textit{bool}: Booleans
- \textit{num}: natural numbers
- \textit{weekday}: some appropriate user defined type

Example (Compound Types)
- \((\sigma_1, \sigma_2)\) \textit{fun}: functions from \(\sigma_1\) to \(\sigma_2\)
- \((\sigma_1, \sigma_2)\) \textit{prod}: pairs of values
Terminology and Notation

Definition (Type operator)

- ‘op’ in \((\sigma_1, \ldots, \sigma_n)op\) is called a type constructor

Conventions

- The type \((\sigma_1, \sigma_2)\text{fun}\) is usually written \(\sigma_1 \to \sigma_2\) and
 \(\sigma_1 \to \sigma_2 \to \cdots \to \sigma_n = (\sigma_1 \to (\sigma_2 \to (\cdots \to \sigma_n)))\)

- The type \((\sigma_1, \sigma_2)\text{prod}\) is usually written \(\sigma_1 \times \sigma_2\) or \(\sigma_1 \ast \sigma_2\)
 and \(\sigma_1 \ast \sigma_2 \ast \cdots \ast \sigma_n = (\sigma_1 \ast (\sigma_2 \ast (\cdots \ast \sigma_n)))\)
Typing of Terms

- All terms must be well-typed.
- $t: \sigma$ means the term t is well-typed and has type σ.

Variables and Constants

- Variables may have any type: $v: \sigma$
- Constants have a fixed generic type: $c: \sigma$
Assigning Types to Terms

Rules for the Assignment

- function application

 \[
 \frac{t_1 : \sigma_1 \rightarrow \sigma_2 \quad t_2 : \sigma_1}{(t_1 \ t_2) : \sigma_2}
 \]

- abstraction

 \[
 \frac{x : \sigma_1 \quad t : \sigma_2}{\lambda x. t : \sigma_1 \rightarrow \sigma_2}
 \]
Polymorphism

Example (Polymorphism)

Consider the constant I, defined by:

$$ I \overset{\text{def}}{=} \lambda x. x $$

We may want to apply the function I to things of different types:

- $I \, 7 = 7$ with $I : \text{num} \to \text{num}$
- $I \, T = T$ with $I : \text{bool} \to \text{bool}$

It seems that I must have two different types.
Polymorphism

The types of polymorphic functions such as \(I \) contain type variables:

\[
I \overset{\text{def}}{=} (\lambda \, x. \, x) : \alpha \to \alpha
\]

where \(\alpha \) stands for ‘any type’. \(\alpha \to \alpha \) is the *generic* type of \(I \).

The constant \(I \) then has every type obtainable by substituting any type for the variable \(\alpha \) in its generic type:

- \(I : \text{bool} \to \text{bool} \)
- \(I : \text{num} \to \text{num} \)
- \(I : (\alpha \to \text{bool}) \to (\alpha \to \text{bool}) \)
- \(I : \alpha \to \alpha \)
Polymorphism Examples

Example (Function Composition)

\[o \overset{\text{def}}{=} \lambda f.\lambda g.\lambda x.f(g(x)) \]

where \(o : (\beta \to \gamma) \to (\alpha \to \beta) \to (\alpha \to \gamma) \)

Example (Equality)

\[= : \alpha \to \alpha \to \text{bool} \]

Example (Apply a Function and Add)

\[\text{app}_\text{add} \overset{\text{def}}{=} \lambda f.(\lambda x.f(x) + f(x)) \]

where \(\text{app}_\text{add} : (\alpha \to \text{num}) \to (\alpha \to \text{num}) \)
Church’s Simple Theory of Types

Definition (Universe)

- Each element $X \in \mathcal{U}$ is a non-empty set
- If $X \in \mathcal{U}$ and $Y \subseteq X$, then $Y \in \mathcal{U}$.
- If $X \in \mathcal{U}$ and $Y \in \mathcal{U}$, then $X \times Y \in \mathcal{U}$
- If $X \in \mathcal{U}$, then powerset $\mathcal{P}(X) = \{ Y : Y \subseteq X \} \in \mathcal{U}$
- \mathcal{U} contains a distinguished infinite set I
- Distinguished element $ch \in \prod_{X \in \mathcal{U}} X: \quad ch(X) \in X$ witnesses non-emptiness
Definition (Model of Type Structure)

- given: type structure Ω as set of type constants (ν, n)
- model: $M(\nu) : \mathcal{U}^n \rightarrow \mathcal{U}$

Polymorphic Types

- types containing type variables: polymorphic
- meaning of polymorphic types not single set, but set-valued function
Summary of Types

Fact (Types)

Types are introduced to avoid inconsistency.

Types

- Type constants: `bool`, `num`, …
- Type variables: `α`, `β`, `γ`, …
- Compound Types: `(σ₁, …, σₙ)op` e.g. `σ₁ → σ₂`, and `σ₁ × σ₂`.

Polymorphism

- `twice ≡ \lambda f.\lambda x.f(f(x))` where `twice : (α → α) → (α → α)`.
Outline

1. Introduction
2. Types
 - Motivation
 - Syntax
 - Polymorphism
 - Semantics
3. Terms
 - Syntax
 - Higher-Order Terms
 - Semantics
4. HOL Proof System
 - Formulas and Sequents
 - Axioms and Rules
5. Summary
Syntax of Terms

- constants: c
- variables: v
- function applications: $T_1 \ T_2$
- lambda abstractions $\lambda v. T$
The distinction between a constant and a variable always depends on the context.

Identifiers

\(x, y, \ foo, \ t', \ k_2, \ c_{\text{val}}, \ldots \)

Special Symbols

\(\exists, \ \forall, \ \exists, \ \wedge, \ \vee, \ \neg, \ 1, \ 2, \ 3, \ldots, +, \times, =, \ldots \)
Function Applications

Notation

\[\langle \text{term}_1 \rangle \langle \text{term}_2 \rangle \]

denotes the result of applying the function \(\langle \text{term}_1 \rangle \) to the value \(\langle \text{term}_2 \rangle \).

Precedence

- parentheses can be used for grouping

 \[f(x), f(gy), (fx)y, \ldots \]

- default precedence

 \[f \ x_1 \ x_2 \ \cdots \ x_n = (((f \ x_1) \ x_2) \ \cdots \ x_n) \]
Abstractions

Notation

\[\lambda \langle \text{var} \rangle . \langle \text{term} \rangle \]

- denotes the function \(x \mapsto \text{term}[x / \text{var}] \).

Convention

\[\lambda x_1 \ x_2 \ \cdots \ x_n \ . \ t = \lambda x_1 . \lambda x_2 . \ \cdots \ \lambda x_n . \ t \]

Example (Abstraction)

- \(\lambda x . \ x \): the identity function
- \(\lambda x . \ f(f\ x) \): function that applies \(f \) twice
- \(\lambda f . \lambda g . \lambda x . \ f(g\ x) \): function composition
Free and Bound Variables

Definition (Free Variable)

\[\lambda x.\langle \text{body} \rangle \]

- A variable \(x \) is called free in a term if it does not occur inside the body of an abstraction.

Definition (Bound Variables)

- If an instance of a variable is not free, it is bound.

Example (Free and Bound Variables)

- Consider variable \(x \):

\[(\lambda x. f x)(\lambda y. x) \]
Syntactic Sugar

Infix Applications

Certain constants are written in infix position:

- $t_1 + t_2$ abbreviates $+ t_1 t_2$
- $t_1 \times t_2$ abbreviates $\times t_1 t_2$
- $t_1 \land t_2$ abbreviates $\land t_1 t_2$
Summary of Terms

Terms

Terms may be

- Variables: $x, y, a', a_{\text{var}}, \phi_1, \ldots$
- Constants: $T, F, \phi, \exists, +, \ldots$
- Applications: $t_1 t_2, t_1 t_2 t_3 \ldots t_n$
- Abstractions: $\lambda x. t, \lambda x_1 x_2 \ldots x_n. t$
Higher-Order Terms

Fact (Higher-Order Terms)

- Variables can range over functions or predicates (i.e. boolean-valued functions)

Example (Higher-Order Term)

- In $\lambda f. f \, 0$, the variable f ranges over functions
- In $\forall P. P(n) \rightarrow P(n+1)$, P ranges over predicates
- Typical assertion

$$\forall x \; f. \, \exists g. (g \, 0 = x) \land \forall n. g \,(n+1) = (f \,(g \, n))$$
Syntactic Sugar

Binders

The quantifiers \forall and \exists are in fact polymorphic constants with types:

- $\forall : (\alpha \to \mathbb{B}) \to \mathbb{B}$
- $\exists : (\alpha \to \mathbb{B}) \to \mathbb{B}$

They are defined such that for $P : (\alpha \to \text{bool})$:

- $\forall P$ means $P(x) = T$ for all x
- $\exists P$ means $P(x) = T$ for some x
Hilbert’s Choice Function

Definition (ε-Operator)

$\varepsilon x. t[x]$

- with $x : \sigma$ and $t[x]$ a term involving x
- binder of type $(\sigma \rightarrow \mathbb{B}) \rightarrow \sigma$
- denotes a value of type σ
 - some value of type σ, $\nu : \sigma$ such that $t[\nu]$ is true
 - no such value exists: arbitrary but fixed value of type σ
Examples of ε-Terms

- This term denotes the number 1: $\varepsilon x. 0 < x \land x < 2$
- This term denotes an even number: $\varepsilon x. \exists y. x = 2 \cdot y$
- An unspecified natural number: $\varepsilon x. x + 1 = x$
- The following proposition is true: $(\varepsilon x. x + 3 = 9) = 6$
Standard Signatures

Standard Signature and Intended Interpretation

- standard type structure Ω contains the atomic types \mathbb{B} of Boolean values and I of individuals
- \rightarrow of type $(\mathbb{B} \rightarrow \mathbb{B} \rightarrow \mathbb{B})$
 - Intended interpretation: implication
- $=$ of type $(\alpha \rightarrow \alpha \rightarrow \mathbb{B})$
 - Intended interpretation: equality on the set α
- ε of type $((\alpha \rightarrow \mathbb{B}) \rightarrow \alpha)$
 - Intended interpretation: Hilbert's choice function.
Standard Logical Constants

Definition of Standard Logical Constants

EXISTS \(\vdash_{\text{def}} \exists = \lambda P. P(\varepsilon P) \)

TRUTH \(\vdash_{\text{def}} \text{true} = ((\lambda x.x) = (\lambda x.x)) \)

FORALL \(\vdash_{\text{def}} \forall = \lambda P. (P = (\lambda x.\text{true})) \)

FALSITY \(\vdash_{\text{def}} \text{false} = \forall x.x \)

NEGATION \(\vdash_{\text{def}} \neg = \lambda x.x \rightarrow \text{false} \)

DISJUNCTION \(\vdash_{\text{def}} \lor = \lambda (x, y). \neg x \rightarrow y \)

CONJUNCTION \(\vdash_{\text{def}} \land = \lambda (x, y). \neg (\neg x \lor \neg y) \)
Formulas

Definition (Formulas in HOL)

- Formulas in HOL are terms of type \mathbb{B}

Example (Formulas in HOL)

- $\forall x. x = 0 \lor \neg (x = 0)$
- true
- $(\lambda x. \neg x)(\forall y. y = y)$
- $\forall x. x = true$
Sequents

Definition (Sequents in HOL)

A sequent is a pair \((\Gamma, t)\) where
- \(\Gamma\) is a set of formulas (assumptions)
- \(t\) is a formula (conclusion)

A sequent \((\Gamma, t)\) essentially means
- From the formulas in \(\Gamma\), \(t\) can be derived.

Example (Sequents in HOL)

The sequent \((\{x = 3, \forall n. n = n\}, x = 99)\) means

\[
\{ x = 3, y = 7, \forall n. n = n \} \vdash x + y = 10
\]
Theorems

Definition (Theorems in HOL)

A theorem is a sequent that is either

- an axiom, or
- can be derived from other theorems

Notation

- $\Gamma \vdash t$ or just $\vdash t$ if Γ is empty

Example (HOL Theorems)

- $\vdash \forall x. x = 0 \lor \neg(x = 0)$?
- $\vdash true$?
- $\vdash (\lambda x. \neg x)(\forall y. y = y)$?
- $\vdash \forall x. x = true$?
Axioms of the HOL Logic

Five Axioms

1. \(\forall b. (b = true) \lor (b = false) \)
2. \(\forall b_1 b_2. (b_1 \rightarrow b_2) \rightarrow (b_2 \rightarrow b_1) \rightarrow (b_1 = b_2) \)
3. \(\forall f. (\lambda x. fx) = f \)
4. \(\forall P x. P x \rightarrow P(\varepsilon P) \)
5. \(\exists f. (\forall x y. fx = fy \rightarrow x = y) \land (\neg \forall x. \exists y. x = f y) \)
Inference Rules

Primitive Inference Rules

ASSUME

\[\{ t \} \vdash t \]

REFL

\[\vdash t = t \]

MP

\[\Gamma_1 \vdash t_1 \to t_2 \quad \Gamma_2 \vdash t_1 \]

\[\Gamma_1 \cup \Gamma_2 \vdash t_2 \]

DISCH

\[\Gamma \vdash t_2 \]

\[\Gamma - \{ t_1 \} \vdash t_1 \to t_2 \]

ABS

\[\Gamma \vdash t_1 = t_2 \]

\[\Gamma \vdash (\lambda x. t_1) = (\lambda x. t_2) \] (with \(x \) not free in \(\Gamma \))
Inference Rules

Primitive Inference Rules (continued)

- **BETA_CONV**
 \[\Gamma \vdash (\lambda x. t_1) t_2 = t_1[t_2/x] \]

- **SUBST**
 \[\Gamma_1 \vdash t_1 = t_2 \quad \Gamma_2 \vdash t[t_1] \]
 \[\Gamma_1 \cup \Gamma_2 \vdash t[t_2] \]

- **INST_TYPE**
 \[\Gamma \vdash t \]
 \[\Gamma \vdash t[\sigma_1 \ldots \sigma_n/\alpha_1 \ldots \alpha_n] \]
Beta Conversion

Rule for Beta-Conversion

\[
\text{BETA_CONV} \quad \frac{}{\vdash (\lambda x. t_1)t_2 = t_1[t_2/x]}
\]

- \(t_1[t_2/x] \) denotes the result of substituting \(t_2 \) for all free occurrences of \(x \) in \(t_1 \)
- bound variables renamed if necessary so that no free variable in \(t_2 \) becomes bound

Example (Beta Conversion)

- \(\vdash (\lambda x. x + 3)7 = 7 + 3 \)
- \(\vdash (\lambda x. (\forall x. x = \text{true}) \rightarrow x) \text{false} = (\forall x. x = \text{true}) \rightarrow \text{false} \)
- \(\vdash (\lambda y. \forall x. x = y) \, x = (\forall x'. x' = x) \)
Rule for Substitution

SUBST \[\frac{\Gamma_1 \vdash t_1 = t_2 \quad \Gamma_2 \vdash t[t_1]}{\Gamma_1 \cup \Gamma_2 \vdash t[t_2]} \]

- where \(t[t_1] \) is a term with selected free occurrences of \(t_1 \) ‘singled out’ for
- \(t[t_2] \) is the result of replacing those chosen \(t_1 \) by \(t_2 \)
- bound variables are renamed so that variables free in \(t_2 \)
- do not become bound in \(t[t_2] \)
Type Instantiation

Rule for Type Instantiation

\[
\text{INST_TYPE} \quad \frac{\Gamma \vdash t}{\Gamma \vdash t[\sigma_1 \ldots \sigma_n/\alpha_1 \ldots \alpha_n]}
\]

which effects the parallel substitution of types \(\sigma_1 \ldots \sigma_n\) for type variables \(\alpha_1 \ldots \alpha_n\) in \(t\).

Restriction: none of \(\alpha_1 \ldots \alpha_n\) occur in \(\Gamma\).

Example (Type Instantiation)

\[
\begin{align*}
\vdash I(x : \alpha) &= x \\
\vdash I(x : \text{num}) &= x
\end{align*}
\]
Summary

Higher-Order Logic
- types and terms
- quantification over predicates, functions and sets

HOL Proof System
- five axioms and eight primitive inference rules