Theorem-Proving Fundamentals

Specification and Verification with Higher-Order Logic

Arnd Poetzsch-Heffter (Slides by Jens Brandt)

Software Technology Group Fachbereich Informatik Technische Universität Kaiserslautern

Sommersemester 2008

Outline

- Introduction
 - Overview
- Syntax and Semantics
 - Syntax
 - Semantics
- Proof Systems
 - Introduction
 - Hilbert Calculus
 - Natural Deduction
- 4 Summary

Overview

Motivation

- How does a theorem prover work?
- What does a theorem prover?
- What is a proof?

Goals

- recapitulate elementary proof theory
- introduce English terms

Outline

- Introduction
 - Overview
- Syntax and Semantics
 - Syntax
 - Semantics
- Proof Systems
 - Introduction
 - Hilbert Calculus
 - Natural Deduction
- Summary

Syntax

Language

- used to designate things and express facts
- terms and formulas are formed from variables and function symbols
- function symbols map a tupel of terms to another term
- constant symbols: no arguments
- constant can be seen as functions with zero arguments
- predicate symbols are considered as boolean functions
- set of variables

Example (Natural Numbers)

- constant symbol: 0
- function symbol suc : $\mathbb{N} \to \mathbb{N}$

Syntax of Propositional Logic

Example (Symbols)

- $\mathscr{V} = \{a, b, c, \ldots\}$ is a set of propositional variables
- ullet two function symbols: \neg and \rightarrow

Example (Language)

- each $P \in \mathcal{V}$ is a formula
- if ϕ is a formula, then $\neg \phi$ is a formula
- ullet if ϕ and ψ are formulas, then $\phi
 ightarrow \psi$ is a formula

6 / 26

Syntactic Sugar

Purpose

- additions to the language that do not affect its expressiveness
- more practical way of description

Example

Abbreviations in Propositional Logic

- ullet true denotes $\phi
 ightarrow \phi$
- false denotes ¬true
- $\phi \lor \psi$ denotes $(\neg \phi) \rightarrow \psi$
- $\phi \land \psi$ denotes $\neg((\neg \phi) \lor (\neg \psi))$
- $\phi \leftrightarrow \psi$ denotes $((\phi \rightarrow \psi) \land (\psi \rightarrow \phi))$

Semantics

Purpose

- syntax only specifies the structure of terms and formulas
- symbols and terms are assigned a meaning
- variables are assigned a value
- in particular, propositional variables are assigned a truth value

Bottom-Up Approach

- assignments give variables a value
- terms/formualas are evaluated based on the meaning of the function symbols

Definition (Structure)

Let \mathcal{L} be a language formed with the function symbols f_0, f_1, \ldots, f_n . An untyped structure \mathcal{M} for \mathcal{L} is an (n+2)-tuple:

- non-empty set M, called the universe
- a function $\hat{f}_0: M^{\operatorname{arity}(f_0)} \to M$
- ...
- a function $\hat{f}_n: M^{\text{arity}(f_n)} \to M$

Interpretation

Definition (Variable assignment)

• a function $I: \mathscr{V} \to M$, maps variables to values of M

Definition (Denotation V of a term)

- if $\phi \in \mathscr{V}$: $V(\phi) = I(\phi)$
- if $f_i(\phi_1,\ldots,\phi_n) = \hat{f}_i(V(\phi_1),\ldots V(\phi_n))$

Interpretation

Example (Assignment in Propositional Logic)

• $I: \mathscr{V} \to \{\text{true}, \text{false}\}$

Example (Denotation of Propositional Logic)

- if $\phi \in \mathscr{V}$: $V(\phi) = I(\phi)$
- $V(\neg \phi) = f_{\neg}(V(\phi))$
- $V(\phi \rightarrow \psi) = f_{\rightarrow}(V(\phi), V(\psi))$

f_{\neg}	
false	true
true	false

<i>f</i> →	false	true
false	true	true
true	false	true

Validity

Definition (Validity of formulas)

- a formula ϕ is valid in \mathcal{M} if ϕ evaluates to true for all assigments I
- notation: $\mathcal{M} \models \phi$
- a proposition ϕ is valid if it is valid in $\mathcal{M} = (\{\text{true}, \text{false}\}, f_{\neg}, f_{\rightarrow})$

Example (Propositional Logic Tautology)

- $\phi = a \vee \neg a$ (where $a \in \mathscr{V}$) is valid
 - I(a) = false: $V(a \lor \neg a) = \text{true}$
 - I(a) = true: $V(a \lor \neg a) = \text{true}$

Outline

- Introduction
 - Overview
- Syntax and Semantics
 - Syntax
 - Semantics
- Proof Systems
 - Introduction
 - Hilbert Calculus
 - Natural Deduction
- 4 Summary

Introduction

General Concept

- purely syntactical manipulations based on designated transformation rules
- starting point: set of formulas, often a given set of axioms
- deriving new formulas by deduction rules from given formulas Γ
- ϕ is *provable* from Γ if ϕ can be obtained by a finite number of derivation steps assuming the formulas in Γ
- notation: $\Gamma \vdash \phi$ means ϕ is *provable* from Γ
- notation: $\vdash \phi$ means ϕ is *provable* from a given set of axioms

Proof System Styles

Hilbert Style

- easy to understand
- hard to use

Natural Deduction

- easy to use
- hard to understand
- . .

Hilbert-Style Deduction Rules

Definition (Deduction Rule)

• deduction rule d is a n+1-tuple

$$\frac{\phi_1 \quad \cdots \quad \phi_n}{\psi}$$

- formulas $\phi_1 \dots \phi_n$, called premises of rule
- formula ψ , called conclusion of rule

Hilbert-Style Proofs

Definition (Proof)

- let D be a set of deduction rules, including the axioms as rules without premisses
- proofs in D are (natural) trees such that
 - axioms are proofs
 - if P_1, \ldots, P_n are proofs with roots ϕ_1, \ldots, ϕ_n and

$$\frac{\phi_1 \cdots \phi_n}{\psi}$$
 is in *D*, then $P_1 \cdots P_n$ is a proof in

$$\frac{P_1 \cdots P_n}{\Psi} \text{ is a proof in } D$$

can also be written in a line-oriented style

Hilbert-Style Deduction Rules

Axioms

- let Γ be a set of axioms, $\psi \in \Gamma$, then $\overline{\psi}$ is a proof
- axioms allow to construct trivial proofs

Modus Ponens

- Rule example: $\frac{\phi \rightarrow \psi \quad \phi}{\psi}$
- if $\phi \rightarrow \psi$ and ϕ have already been proven, ψ can be deduced

Proof Example

Example (Hilbert Proof)

- language formed with the four proposition symbols P, Q, R, S
- axioms: P, Q, $Q \rightarrow R$, $P \rightarrow (R \rightarrow S)$

$$egin{array}{c|cccc} \hline P
ightarrow (R
ightarrow S) & \hline P & \hline Q
ightarrow R & \hline Q
ightarrow R & \hline S & \hline S & \hline \end{array}$$

Hilbert Calculus for Propositional Logic

Example (Axioms of Propositional Logic)

All instantiations of the following schemas:

- true
- $a \rightarrow (b \rightarrow a)$
- $\bullet \ (a \rightarrow (b \rightarrow c)) \rightarrow ((a \rightarrow b) \rightarrow (a \rightarrow c))$
- $\bullet \ (\neg b \rightarrow \neg a) \rightarrow ((\neg b \rightarrow a) \rightarrow b)$
- where a, b, c are arbitrary propositions

Natural Deduction

Motivation

- introducing a hypothesis is a natural step in a proof
- Hilbert proofs do not permit this directly
- ullet can be only encoded by using o
- proofs are much longer and not very natural

Natural Deduction

- alternative definition where introduction of a hypothesis is a deduction rule
- \bullet deduction step can modify not only the proven propositions but also the theory Γ

Natural Deduction Rules

Definition (Deduction Rule)

• deduction rule d is a n+1-tuple

$$\frac{\Gamma_1 \vdash \phi_1 \quad \cdots \quad \Gamma_n \vdash \phi_n}{\Gamma \vdash \Psi}$$

- pairs of Γ (set of formulas) and ϕ (formulas): sequents
- proof: tree of sequents

Natural Deduction Rules

Definition (Deduction Rule)

- rich set of rules
- elimination rules eliminate a logical symbol from a premise
- introduction rules introduce a logical symbol into the conclusion
- \bullet reasoning from assumptions formalised as the elimination rule for the implication \rightarrow

Natural Deduction Rules

Example (Natural Deduction Rules)

V-introduction

$$\frac{\Gamma \vdash \phi}{\Gamma \vdash \phi \lor \psi} \qquad \frac{\Gamma \vdash \psi}{\Gamma \vdash \phi \lor \psi}$$

V-elimination

$$\frac{\Gamma \vdash \phi \lor \psi \quad \Gamma, \phi \vdash \xi \quad \Gamma, \psi \vdash \xi}{\Gamma \vdash \xi}$$

→-introduction

$$\frac{\Gamma, \phi \vdash \psi}{\Gamma \vdash \phi \to \psi}$$

→-elimination

$$\frac{\Gamma \vdash \phi \to \psi \quad \Gamma \vdash \phi}{\Gamma \vdash \psi}$$

Outline

- Introduction
 - Overview
- Syntax and Semantics
 - Syntax
 - Semantics
- Proof Systems
 - Introduction
 - Hilbert Calculus
 - Natural Deduction
- Summary

Summary

Theorem-Proving Fundamentals

- syntax: symbols, language
- semantics: structure, assigment, denotation
- proof system: theory, axioms, deduction rules

Outlook

• theorem-prover principles and architecture

