
15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 1

Fortgeschrittene Aspekte
objektorientierter
Programmierung

Arnd Poetzsch-Heffter

AG Softwaretechnik

TU Kaiserslautern

Sommersemester 2013

Advanced Aspects of
Object-oriented
Programming

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 2

0. Preliminaries

The course module consists of 2 hours lecture
and 1 hour exercises („Übungen”).

The module exam is an oral exam about the content
of the lecture and the assignments.

There are web pages containing the course material
and information about the course:

 softech.informatik.uni-kl.de/

under item „Lehre“

Organisational Information:

Literature:

Will be given along with the course, some literature is
already given on the web pages.

The course material is based on a collaboration with
Prof. Peter Müller (ETH Zürich/Microsoft Research).
Several of the slides are of his lecture
„Konzepte objektorientierter Programmierung“.

Cooperation:

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 3

1. Introduction

2. Objects, Classes, Inheritance

3. Subtyping and Parametric Types

4. Object Structures, Aliasing and Encapsulation

5. Specification and Checking

6. Concurrency and Distribution

7. Program Frameworks

8. Component Software

Overview and Structure of Course:

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 4

Overview:

• The object-oriented paradigm

• Software engineering and programming challenges

• Programming object systems

• Properties of programs

1. Introduction

1.1 The Object-Oriented Paradigm

Explanation: (Paradigm/Paradigma)

A framework consisting of concepts, methods,

techniques, theories, and standards.

• Imperative / procedural – we ask “how”
• Declarative (functional, logic) – we ask “what”
• Object-oriented – we ask “who”

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 5

„The basic philosophy underlying object-oriented
programming is to make the programs as far as
possible reflect that part of the reality they are going
to treat.

It is then often easier to understand and to get an
overview of what is described in programs. The
reason is that human beings from the outset are
used to and trained in the perception of what
is going on in the real world.

The closer it is possible to use this way of thinking in
programming, the easier it is to write and understand
programs.“

[from: Object-oriented Programming in the
 BETA Programming Language]

„Born in the ice-blue waters of the festooned Norwegian
coast; amplified along the much grayer range of the
Californian Pacific; viewed by some as a typhoon,
by some as a tsunami, and by some as a storm in a
teacup – a tidal wave is reaching the shores of the
computing world.''

[from: Object-oriented Software Construction]

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 6

1950s

1960s

1970s

1980s

1990s

2000s

Imperative Object-OrientedDeclarative

• Algol 60

• Simula 67

Cobol •

• Prolog• Pascal

• LISP

• Smalltalk 80

• Modula-2

• Fortran I

Scheme •

Java •

• PL/I

• C++Common LISP •

C •

• Ada 83

• C#

• Basic

Smalltalk •

• Haskell

• SML

• ML

• Eiffel

Oberon •
• Modula-3

• Sather

GUIs

Internet

Networks

Software
Crisis

History of programming:

• Scala

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 7

Objectives of subsection:
– Motivation for object-oriented programming
– System construction vs. language concepts
– Distinction between core concepts, language

concepts, and language constructs

Main challenges:
• Reuse:

- clear, well documented interfaces
- adaptability, extensibility
- support for parameterized components

• Human computer interface, GUIs:

 - units with complex dynamic behavior

 - support of frameworks for core functionality

 - make the programs reflect part of the reality

• Distributed computing:

 - concurrency

 - communication

 - distributed state

 - mobile code

1.2 Software Engineering and

 Programming Challenges

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 8

Example: (adaptibility/extensibility)

Reuse

We consider:

- extensibility & adaptability in a simple example:

 imperative vs. object-oriented

- abstract algorithms

Scenario: University Administration System
– Models students and professors
– Stores one record for each student and
 each professor in a repository/array
– Procedure printAll prints all records in the
 repository

Simple implementation in C:

typedef struct {

 char * name;

 char * room;

 char * institute;

} Professor;

void printProf(Professor* p) { … }

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 9

typedef struct {

 char *name;

 int reg_num;

} Student;

void printStud(Student* s) { … }

typedef struct {
 enum { STU,PROF } kind;
 union {
 Student* s;
 Professor* p;
 } u;
} Person;

typedef Person** PersonArray;

void printAll(PersonArray ar) {

 int i;

 for (i=0; ar[i] != NULL; i++) {

 switch (ar[i] -> kind) {

 case STU:

 printStud(ar[i] -> u.s); break;

 case PROF:

 printProf(ar[i] -> u.p); break;

 }

} }

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 10

• Old scenario: as above
• Extension: Add assistants to system

– Add record and print function for assistants
– Reuse old code for repository and printing

typedef struct {
 char *name;
 char PhD_student; /* ‘y‘, ‘n‘ */
} Assistant;

void printAssi(Assistant * as) { … }

typedef struct {

 ... /* as above */

} Professor;

void printProf(Professor* p) { … }

typedef struct {

 ... /* as above */

} Student;

void printStud(Student* s) { … }

Extending and adapting the program:

Step 1: Add record and print function for assistant

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 11

typedef struct {
 enum { STU,PROF, ASSI } kind;
 union {
 Student* s;
 Professor* p;
 Assistant* a;
 } u;
} Person;

typedef Person** PersonArray;

void printAll(PersonArray ar) {

 int i;

 for (i=0; ar[i] != NULL; i++) {

 switch (ar[i] -> kind) {

 case STU:

 printStud(ar[i] -> u.s); break;

 case PROF:

 printProf(ar[i] -> u.p); break;

 case ASSI:

 printAssi(ar[i] -> u.a); break;

 }

} }

Step 2: Reuse code for repository

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 12

• No explicit language support for extension and
adaptation

• Adaptation usually requires modification of
reused code

• Copy-and-paste reuse
– Code duplication
– Difficult to maintain
– Error-prone

Example: (abstract algorithm)

Implement a sorting algorithm sort for all lists with
elements of some type T having a procedure

 boolean compare (T, T);

sort has the following properties:

• it does not need to know what the T‘s look like
 (i.e. it abstract from T‘s concrete implementation)

• it can in particular be „re“-used for new datatypes
 implementing compare

• it allows for separate development with clear
 interfaces

Abstract algorithms for reuse:

Reuse in imperative languages:

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 13

Human computer interfaces, GUIs

Requirements for software technology:

• powerful and flexible components that

- provide core functionality

- cooperate

- hide complexity

• easy to use, reflect intuition of user

Tasks of user interfaces:

Should support flexible interaction between
users and applications:

• controlling the applications usually with
 concurrent triggers

• input is often complex data like:
- mouse, joy stick movements
- speech
- images

• output is often complex data like:
- graphics, videos
- dynamic visualizations

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 14

Example: (relation GUI and objects)

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 15

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 16

Distributed computing

Goals:

• Make local and distributed programs as similar
 as possible

• Make adaptation from local to distributed programs
 as simple as possible

• Hide concurrency when reasonable

• requires communication mechanism

• means to say who executes the computation
 and where it should take place (notion of location)

• has to support concurrency
 (different requests from different locations)

• has to work with distributed state

• makes mobile code desirable

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 17

Cooperating components
with well-defined
interfaces

Inherently
concurrent
execution model

Classification and
specialization

Notion of
locality

extensibility
and

adaptability

adaptable
frameworks

complex
dynamic
behavior

components

modeling
entities of
real world

distributed
state

Communication

concurrency

documented
interfaces

mobile
code

From challenges to required programming concepts:

Required programming concepts

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 18

What are the concepts of a programming paradigm
• That allow one to express concurrency naturally?
• That structure programs into cooperating

program parts with well-defined interfaces?
• That are able to express classification and

specialization of program parts without modifying
reused code?

• That facilitate the development of distributed
programs?

How can the required concepts be realized?

1.3 Programming Object Systems

Explanation: (Object system)

An object system is a system that is modelled

and described as
• a collection of cooperating objects where
• objects have state and processing ability and
• objects exchange messages.

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 19

a1:
a2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}

m(p1,p2) {..}
n(p,r) {..}

obj2 .m(“KOOP”,1)

Collection of objects:

Basic object model:

a:

obj2

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 20

• Objects have well-defined interfaces
– Publicly accessible attributes
– Publicly accessible methods

• Interfaces allow to hide implementation
 details (information hiding)

• Interfaces provide a protection boundary
 (encapsulation)

• Interfaces are the basis for abstract
 description of behavior

Extended object model – Interfaces:

a1:
a2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}

Example: (Object interface):

ha1:
ha2:
ha3:

h1(p,q) {..}
h2(r) {..}

Object obj1 from above
may have:

- „private“ attributes

- „private“ methods

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 21

Person

AssistantProfessor Student

Bachelor
Student

Master
Student

PhD
Student

• Objects with same implementation are put into
one class / are described by one class

• Objects/classes can be typed according to
 the interfaces they provide

• Objects can be hierarchically classified according
 to the types they implement (subtyping):

 - objects can belong to several types
 (polymorphism)

 - type hierarchies are extensible

• Substitution principle: Subtype objects can be
 used wherever supertype objects are expected

Extended object model –
Classification and Polymorphism:

Example: (Classification/subtyping):

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 22

Cooperating components
with well-defined
interfaces

Inherently
concurrent
execution model

Classification and
specialization

Notion of
locality

extensibility
and

adaptability

adaptable
frameworks

complex
dynamic
behavior

components

modeling
entities of
real world

distributed
state

Communication

concurrency

documented
interfaces

mobile
code

→ Objects
→ Interfaces
→ Encapsulation

→ Classification
→ Subtyping
→ Polymorphism
→ Substitution

→ Active objects
→ Message passing

→ Object identity
→ Local state
→ Local methods

Relation to required concepts

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 23

• Core concepts of the OO-paradigm
– Software based on object model
– Interfaces and encapsulation
– Classification and polymorphism

• Core concepts are "abstract" concepts

• To apply the core concepts we need ways to
 express them in programs

• Language concepts enable and facilitate the
 application of the core concepts

Remark:

The abstract OO-concepts can as well be applied
when using non-OO languages (e.g. imperative
languages). However, it is more difficult and less
elegant.

Concepts: Summary

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 24

C
o

o
pe

ra
tin

g
com

p
on

e
nts

w
ith Inte

rface
s

In
he

re
ntly

C
o

ncu
rre

nt
E

xecu
tio

n
 M

o
d

el

C
la

ssificatio
n

a
nd

S

p
ecializa

tio
n

L
oca

lity

R
eq

u
irem

en
t

O
b

ject m
o

de
l

C
la

ssificatio
n &

P

o
lym

o
rph

ism

Inte
rface

s &
E

nca
psu

la
tio

n

C
o

re C
o

n
ce

p
t

In
he

ritan
ce

C
lasses

E
tc.

S
u

btyp
in

g

D
yn

a
m

ic
B

ind
ing

L
an

g
u

ag
e

C
o

n
ce

p
t

Inh
e

rita
n

ce
w

/o
 S

u
btyp

in
g

M
u

ltiple
Inh

erita
nce

S
ing

le
Inh

e
rita

n
ce

L
an

g
u

ag
e

C
o

n
stru

cts

E
tc.

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 25

1.4 Properties of Systems & Programs

verified

Explanation: (Specification)

A specification describes properties
- of a system or program implementing a system
- in a precise way.

Remarks:

• A program satisfies/meets a specification.

• Specifications can be declarative or model-based.

• Programs are developed from specifications.
 Specifications bridge the gap between the intuition
 about a system and its implementation.

• Specification should be

 - documented

 - checked

 - proved

 We consider program-level specification as
 an essential part of programming.

• Techniques and tools for handling specifications
 and programs together are available.

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 26

Different kinds of properties:

We distinguish between

• functional properties:
 input-output behavior, modifications, invariants, etc.

• non-functional properties:
 usability, reusability, readability, portability,
 scalability, efficiency, etc.

We will concentrate on functional properties,
in particular:

• Type properties

• Class invariants

• Method specifications

• Interface and encapsulation properties

Goals:

• get a better understanding of programming

• learn specification and checking techniques

• learn new language features and constructs

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 27

1. Type properties:

Examples: (Properties)

class Entry<ET> {
 ET element;
 Entry<ET> next;
 Entry<ET> previous;

 Entry(ET element, Entry<ET> next,
 Entry<ET> previous) {
 this.element = element;
 this.next = next;
 this.previous = previous;
 }
}

class LinkedList<ET> {
 Entry<ET> header =
 new Entry<ET>(null, null, null);
 int size = 0;

 LinkedList() { ... }
 ET getLast() { ... }
 ET removeLast() { ... }
 void addLast(ET e) { ... }
 int size() { return size; }
}

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 28

class Test {
 public static void main(String[] args){

 LinkedList<String> ls =
 new LinkedList<String>();
 ls.addLast("erstes Element");
 ls.addLast("letztes Element");
 ls.getLast().indexOf("Elem");
 // yields 8

 LinkedList<Object> lo =
 new LinkedList<Object>();
 lo.addLast(new Object());
 lo.addLast(new Object());
 lo.getLast().indexOf("Elem");
 // program error
 // detected by compiler
}}

2. Access properties:

class Capsule {
 private Vector v;
 ...
}

Only objects of class Capsule can access vectors
referenced by objects of class Capsule. True??

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 29

3. Assertions (Zusicherungen):

a. Simple property:

 ...
 C cobj = new C(...);
 assert cobj.x != null ;

b. Loop invariant (Schleifeninvariante):

 public static int isqrt(int y){
 int count = 0, sum = 1;
 while (sum <= y) {
 count++;
 sum += 2 * count + 1;
 assert count*count <= y
 && sum==(count+1)*(count+1);
 }
 return count;
 }

c. More complex property for an AWT-fragment:

 ...
 Container c;
 Button b;
 ...
 c.remove(b);
 assert !EX Container cex: !EX int i:
 cex.getComponents()[i] == b;

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 30

4. Method specifications:

Remark:

• Assertions allow to formulate properties about the
 state of program variables.

• If assertions are specified by Java expressions,
 these expressions should not have side-effects.

• Asssertions can be used to express preconditions
 of methods.

• Assertions can be proved or dynamically checked.

public class IntMathOps {

 /*@ public normal_behavior
 @ requires y >= 0
 @ modifiable \nothing
 @ ensures \result*\result <= y
 @ && y < (Math.abs(\result)+1)
 @ *(Math.abs(\result)+1);
 @*/
 public static int isqrt(int y){ ... }
}

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 31

5. Class invariant:

Further kinds of functional properties:

 public class List {
 int length;
 ListElems le;
 //@ invariant length == le.leng();
 ...
 }

• Event specifications:

 - occurrence of exceptions

 - modifications of variables

 - invocation of methods

• Termination

• History constraints:

 - relations between two states

• Temporal properties:

 - Is something true until an event happens?

 - Will something eventually happen?

