Fortgeschrittene Aspekte
objektorientierter
Programmierung

Advanced Aspects of
Object-oriented
Programming

Arnd Poetzsch-Heffter
AG Softwaretechnik

TU Kaiserslautern

Sommersemester 2013

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

0. Preliminaries

Cooperation:

The course material is based on a collaboration with
Prof. Peter Muller (ETH Zurich/Microsoft Research).
Several of the slides are of his lecture

,Konzepte objektorientierter Programmierung®.

Organisational Information:

The course module cons__ists of 2 hours lecture
and 1 hour exercises (,Ubungen”).

The module exam is an oral exam about the content
of the lecture and the assignments.

There are web pages containing the course material
and information about the course:
softech.informatik.uni-kl.de/

under item ,Lehre”

Literature:

Will be given along with the course, some literature is
already given on the web pages.

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

Overview and Structure of Course:

Introduction

Objects, Classes, Inheritance

Subtyping and Parametric Types

Object Structures, Aliasing and Encapsulation
Specification and Checking

Concurrency and Distribution

Program Frameworks

© N O 0o kK~ WD~

Component Software

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

1. Introduction

Overview:

* The object-oriented paradigm
* Software engineering and programming challenges
* Programming object systems

* Properties of programs

1.1 The Object-Oriented Paradigm

Explanation: (Paradigm/Paradigma)

A framework consisting of concepts, methods,
techniques, theories, and standards.

[]
* Imperative / procedural — we ask “how”
* Declarative (functional, logic) — we ask “what”
* QObject-oriented — we ask “who”

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 4

,1he basic philosophy underlying object-oriented
programming is to make the programs as far as
possible reflect that part of the reality they are going
to treat.

It is then often easier to understand and to get an
overview of what is described in programs. The
reason is that human beings from the outset are
used to and trained in the perception of what

is going on in the real world.

The closer it is possible to use this way of thinking in
programming, the easier it is to write and understand
programs.”

[from: Object-oriented Programming in the
BETA Programming Language |

,Born in the ice-blue waters of the festooned Norwegian
coast; amplified along the much grayer range of the
Californian Pacific; viewed by some as a typhoon,

by some as a tsunami, and by some as a storm in a
teacup — a tidal wave is reaching the shores of the
computing world."

[from: Object-oriented Software Construction]

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 5

History of programming:

Imperative Declarative Object-Oriented

19505' e Fortran |

e Algol60 « LISP
41 Cobol » J S
19605 + Basic" PL/
e Simula 67
Softw_are 1 Smalltalk »
Crisis C* .Ppascal - Prolog
1970 Scheme e
e Modula-2 ML
GUIs 1 e Smalltalk 80
 Ada 83
« SML -
» Eiffel
1980¢ Common LISP « T e G+t
Oberon ¢
Networks | * Haskell Modula-3
19904 Java . Sather
« C#
Internet 4 e Scala

200051

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 6

1.2 Software Engineering and

Programming Challenges

Objectives of subsection:
— Motivation for object-oriented programming
— System construction vs. language concepts

— Distinction between core concepts, language
concepts, and language constructs

Main challenges:

* Reuse:
- clear, well documented interfaces
- adaptability, extensibility
- support for parameterized components

* Human computer interface, GUlIs:
- units with complex dynamic behavior
- support of frameworks for core functionality
- make the programs reflect part of the reality

* Distributed computing:
- concurrency
- communication
- distributed state
- mobile code

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

Reuse

We consider;

- extensibility & adaptability in a simple example:
imperative vs. object-oriented

- abstract algorithms

Example: (adaptibility/extensibility)

Scenario: University Administration System
— Models students and professors

— Stores one record for each student and
each professor in a repository/array

— Procedure printAll prints all records in the
repository

Simple implementation in C:

typedef struct {
char * name;
char * room;
char * institute;
} Professor;

void printProf(Professor* p) { ...}

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

typedef struct {
char "name;
int reg_num;
} Student;

void printStud(Student*s) { ... }

typedef struct {
enum { STU,PROF } kind;
union {
Student® s;
Professor* p;

pu;
} Person;
typedef Person™ PersonArray;

void printAll(PersonArray ar) {
int i;
for (i=0; ar[i]!= NULL; i++) {
switch (ar[i]-> kind) {
case STU:
printStud(ar[i]-> u.s); break;
case PROF:
printProf(ar[i]->u.p); break;

'}

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

Extending and adapting the program:

* Old scenario: as above

* Extension: Add assistants to system
— Add record and print function for assistants
— Reuse old code for repository and printing

Step 1: Add record and print function for assistant

typedef struct {
... [* as above */
} Professor;

void printProf(Professor* p) { ...}

typedef struct {
... [" as above */
} Student;

void printStud(Student*s) { ... }

typedef struct {

char *name;

char PhD_student; /*‘y’, ‘'n"*/
} Assistant;

void printAssi(Assistant *as) { ... }

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

Step 2: Reuse code for repository

typedef struct {
enum { STU,PROF, ASSI } kind;
union {
Student® s;
Professor® p;
Assistant™ a;

}u;

} Person;
typedef Person*™ PersonArray;

void printAll(PersonArray ar) {
int i;
for (i=0; ar[i]!= NULL; i++){
switch (ar[i]->kind) {

case STU:
printStud(ar[i] -> u.s); break;

case PROF:
printProf(ar[i]-> u.p); break;

case ASSI:
printAssi(ar[i]->u.a); break;

}

;o)
15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 11

Reuse in imperative languages:

* No explicit language support for extension and
adaptation

* Adaptation usually requires modification of
reused code

* Copy-and-paste reuse
— Code duplication
— Difficult to maintain
— Error-prone

Abstract algorithms for reuse:

Example: (abstract algorithm)

Implement a sorting algorithm sort for all lists with
elements of some type T having a procedure

boolean compare (T, T);

sort has the following properties:

* it does not need to know what the T's look like
(i.e. it abstract from T's concrete implementation)

* it can in particular be ,re“-used for new datatypes
iImplementing compare

* it allows for separate development with clear
interfaces

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

12

Human computer interfaces, GUIs

Tasks of user interfaces:

Should support flexible interaction between
users and applications:

 controlling the applications usually with
concurrent triggers

* input is often complex data like:
- mouse, joy stick movements
- speech
- images

* output is often complex data like:
- graphics, videos
- dynamic visualizations

Requirements for software technology:

* powerful and flexible components that
- provide core functionality
- cooperate
- hide complexity

* easy to use, reflect intuition of user

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 13

(relation GUI and objects)

Example

h 1

CORRE R TN B PO

E TR R THIE N LT TR T8 AN A I =8 W)
LS00 04 SUUENITCFNLS 290 W THp CEI0 EEe sy

PRI RS0 ,rfmpcmrﬁ_rw__...,__,._

FIIATraYIrTD RE TR QRIS AR 330 ._Eﬁ.j..._., i
e FUrcDo Eﬂaeiﬁ: IEPICEC ERT
TN R TE I P mr.._mnﬁ.ﬁmc.ﬂ Ermpﬁripm__ua
UETMELGE DTECCE E.mw,piﬂ_ufm..immtﬁ..hlﬂ ﬂhi._.ﬂ

_ H li__.l i...Tl Lok
__,u 3 uydligng pun Bungialay, e

Lo s BUE LT

14

© A. Poetzsch-Heffter, TU Kaiserslautern

15.04.13

(\ (|

_,.N_H ”.Hm_uﬂu.m_ﬂ_um_m._ cﬁ ”.Hm_uﬂu.mﬂ_um_m«__

Z37g ISyseqoeg 2SI

PaUIcJISANCOTIDE A6TIUSTINSRUSG T5 £

R TS T T (T
(e v I T T e o T LBl o= o N | il B = I
=t | S L = 1 ol =3 =00 =1 e Lo e 13

by Ty | e (et = T~ s B R e

e ZUa NN B CUTQEIoee] AP 82 10 0T RE[CARA
ey iy P Eoalig g JEPUe S pu.
TP F2T TARTME TN 20l oD IRSe] i 07 o
R O P AP) et e T S Bt VI T Rl I o 1 T’ B T By |

peUIcyIsdUoTJoE

7YY IBAQoBOSg

n=sJIaTIJSTESI
3= Tedq =BT JOE
uszuaIa J=d

ez e e]

_me re.l _.,“.., _J__quﬂ B Ip——

,Il_h _ duy difpgny; pun Eane

J= ‘OoJJng

w UE SFSETFITELDS
I¥ITTY I=ZInUag |

r?

\)/\./J

Jne y=
1yalqgo-Usling UF 33TI]
FTUSTEIg-paWIo JISJUSTIDE 7

15

© A. Poetzsch-Heffter, TU Kaiserslautern

15.04.13

Distributed computing

* requires communication mechanism

* means to say who executes the computation
and where it should take place (notion of location)

has to support concurrency
(different requests from different locations)

has to work with distributed state

makes mobile code desirable

Goals:

* Make local and distributed programs as similar
as possible

* Make adaptation from local to distributed programs
as simple as possible

* Hide concurrency when reasonable

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 16

Required programming concepts

From challenges to required programming concepts:

Cooperating components Classification and
with well-defined specialization
interfaces

Inherently
concurrent Notion of
execution model [oJor=110Y;

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

How can the required concepts be realized?

What are the concepts of a programming paradigm

That allow one to express concurrency naturally?

That structure programs into cooperating
program parts with well-defined interfaces?

That are able to express classification and
specialization of program parts without modifying
reused code?

That facilitate the development of distributed
programs?

1.3 Programming Object Systems

Explanation: (Object system)

An object system is a system that is modelled
and described as

* a collection of cooperating objects where

* objects have state and processing ability and
* objects exchange messages.

[]

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

18

Collection of objects:

i

7.

Basic object model:

obj1

al:
az2:

m(p1,p2) {..}
m1() {..}
m2(p) {..}

obj2 .m(“KOOP”,1)

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

19

Extended object model — Interfaces:

* Objects have well-defined interfaces

— Publicly accessible attributes
— Publicly accessible methods

* Interfaces allow to hide implementation

details (information hiding)

* Interfaces provide a protection boundary

(encapsulation)

* |nterfaces are the basis for abstract

description of behavior

Example: (Object interface):

Object obj1 from above obj1
may have: a1
az:
ha1t:
- ,private” attributes ha2:
ha3:
m(p1,p2){..}
m1(){..}
m2(p) {..}
- ,private” methods h1(p,q) {..}
h2(r) {..}
[
15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 20

Extended object model —
Classification and Polymorphism:

* Objects with same implementation are put into
one class / are described by one class

* Objects/classes can be typed according to
the interfaces they provide

* Obijects can be hierarchically classified according
to the types they implement (subtyping):

- objects can belong to several types
(polymorphism)

- type hierarchies are extensible

* Substitution principle: Subtype objects can be
used wherever supertype objects are expected

Example: (Classification/subtyping):

Person

/I

Professor Student Assistant

N

Bachelor Master PhD
Student Student Student

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 21

Relation to required concepts

Cooperating components Classification and
with well-defined specialization
interfaces

Inherently
concurrent Notion of
execution model locality

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

Concepts: Summary

* Core concepts of the OO-paradigm
— Software based on object model
— Interfaces and encapsulation
— Classification and polymorphism

* Core concepts are "abstract” concepts

* To apply the core concepts we need ways to
express them in programs

* Language concepts enable and facilitate the
application of the core concepts

Remark:

The abstract OO-concepts can as well be applied
when using non-OO0 languages (e.g. imperative
languages). However, it is more difficult and less
elegant.

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 23

= (of

Inheritance
w/o Subtyping

Multiple
Inheritance

Single
Inheritance

Language
Constructs

Etc.

Dynamic
Binding

Subtyping
Inheritance
Classes

Language
Concept

Classification &
Polymorphism

Interfaces &
Encapsulation

Object model

Core Concept

Locality

Inherently
Concurrent
Execution
Model

Classification
and
Specialization

Cooperating

components
with Interfaces

Requirement

24

© A. Poetzsch-Heffter, TU Kaiserslautern

15.04.13

1.4 Properties of Systems & Programs

Explanation: (Specification)

A specification describes properties
- of a system or program implementing a system
- in a precise way.

Remarks:

* A program satisfies/meets a specification.
* Specifications can be declarative or model-based.

* Programs are developed from specifications.
Specifications bridge the gap between the intuition
about a system and its implementation.

* Specification should be
- documented
- checked } verified
- proved

We consider program-level specification as
an essential part of programming.

* Techniques and tools for handling specifications

and programs together are available.
[]

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 25

Different kinds of properties:

We distinguish between

* functional properties:
input-output behavior, modifications, invariants, etc.

* non-functional properties:
usability, reusability, readability, portability,
scalability, efficiency, etc.

We will concentrate on functional properties,
in particular:

* Type properties
* Class invariants
* Method specifications

* Interface and encapsulation properties

Goals:

* get a better understanding of programming
* learn specification and checking techniques

* learn new language features and constructs

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern 26

Examples: (Properties)

1. Type properties:

class Entry<ET> {
ET element;
Entry<ET> next;
Entry<ET> previous;

Entry (ET element, Entry<ET> next,
Entry<ET> previous)

this.element = element;
this.next = next;
this.previous = previous;

class LinkedList<ET> {
Entry<ET> header =

int size = 0;

LinkedList () { ... }

ET getLast () { ...}

ET removelLast () { ... }
void addLast (ET e) { ... }
int size () { return size; }

new Entry<ET>(null, null, null);

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

27

class Test {

public static voild mailn(String|]

N

LinkedList<String> 1ls =

1ls.
1ls.
1ls.

new LinkedList<String> ()
addLast ("erstes Element") ;
addLast ("letztes Element") ;
getLast () .1ndexOf ("Elem") ;
// yields 8

LinkedList<Object> 1lo =

lo.
lo.
lo.

new LinkedList<Object> ()

addLast (new Object ());
addLast (new Object ());
getLast () .1ndexOf ("Elem") ;

// program error
// detected by compiler

args) {

.
14

°
4

2. Access properties:

class Capsule {
private Vector v;

Only objects of class Capsule can access vectors
referenced by objects of class Capsule. True??

15.04.13

© A. Poetzsch-Heffter, TU Kaiserslautern

28

3. Assertions (Zusicherungen):

a. Simple property:

C cob] = new C(...);
assert cobj.x != null ;

b. Loop invariant (Schleifeninvariante):

public static int isgrt(int vy) {
int count = 0, sum = 1;
while (sum <= y) {
count++;

sum += 2 * count + 1;
assert count*count <=y

}

return count;

&& sum== (count+1l) * (count+1) ;

c. More complex property for an AWT-fragment:

Container c;
Rutton b;

c.remove (b) ;

cex.getComponents () [1] == b;

assert !EX Container cex: !'EX 1nt 1i:

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

29

Remark:

* Assertions allow to formulate properties about the
state of program variables.

* If assertions are specified by Java expressions,
these expressions should not have side-effects.

* Asssertions can be used to express preconditions
of methods.

* Assertions can be proved or dynamically checked.

4. Method specifications:

public class IntMathOps {
/*@ public normal behavior

requires y >= 0

modifiable \nothing

ensures \result*\result <= vy

&§& y < (Math.abs (\result)+1)

« * (Math.abs (\result) +1)
@*/

™ (@ @ (» ™

}

.
7

public static int i1sgrt(int y){ ... }

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

30

5. Class invariant:

public class List {
int length;
ListElems le;
//@ invariant length == le.leng();

Further kinds of functional properties:

Event specifications:

- occurrence of exceptions
- modifications of variables
- invocation of methods

Termination

History constraints:
- relations between two states

Temporal properties:
- Is something true until an event happens?
- Will something eventually happen?

15.04.13 © A. Poetzsch-Heffter, TU Kaiserslautern

31

