
Prof. Dr. A. Poetzsch-Heffter
Mathias Weber, M.Sc.

University of Kaiserslautern
Department of Computer Science

Software Technology Group

Advanced Aspects of Object-Oriented Programming (SS 2013)

Practice Sheet 3 Date of Issue: 30.04.13
Deadline: 07.05.13

(before the lecture as PDF via E-Mail)

Exercise 1 Reflection and Annotations

The Proxy class (java.lang.reflect.Proxy) allows to intercept method calls.

a) Inform yourself about the Proxy class using the JDK documentation. Is it a normal JDK class? Also inform your-
self about Java annotations (for example under http://docs.oracle.com/javase/tutorial/java/annotations/).

b) Develop a generic wrapper using the Proxy class, which allows, for a certain object, upon invokation of one of its
methods, to check annotated method parameters for non-nullness. An example of using the wrapper could look as
follows:

public interface Example {
public void print(@NonNull String s);

}

...

Example e = new Example() {
public void print(String s) {

System.out.println(s);
}

};
e = (Example)Wrapper.wrap(e);
e.print("Hello"); // prints out "Hello"
e.print(null); // should throw an exception

The annotation type declaration is given as follows (does not need to be modified).

import java.lang.annotation.*;

@Target(ElementType.PARAMETER)
@Inherited
@Retention(RetentionPolicy.RUNTIME)
public @interface NonNull {}

c) For which types and methods does the presented technique work?

Exercise 2 Inheritance and Subtyping

a) Explain the relation between inheritance and subtyping.

b) Explain the output of the following program:

http://docs.oracle.com/javase/tutorial/java/annotations/

class Dog {
public static void bark() {

System.out.print("woof ");
}

}

class Basenji extends Dog {
public static void bark() { }

}

public class Bark {
public static void main(String args[]) {

Dog woofer = new Dog();
Dog nipper = new Basenji();
woofer.bark();
nipper.bark();

}
}

c) Define the role and semantics of the @Override annotation in Java. Explain the relation between overriding and
dynamic dispatch. Hint: use the Java Language Specification

d) Analyze the following program:

package p;

public class Person {
void print() {}

}

package q;
import p.Person;

public class Assistant extends Person {}

package p;
import q.Assistant;

public class PhDAssistant extends Assistant {
public void print() {}

}

Does the print method in class PhDAssistant override the print method in class Person ? Hint: look at the Java
Language Specification in Section 8.4.8.

Exercise 3 Super-Calls

Write a program, that would behave differently under the assumption of dynamically bound super-calls than it does
with statically bound super-calls.

Exercise 4 StoJas Extension

In this exercise, we are going to build extensions to the Java subset StoJas that was presented in the lecture.

a) Extend the syntax as well as the semantics (static & dynamic) of StoJas to support a "for(...) { ... }" statement
and give a detailed explanation for the necessary adjustments.

b) Extend the syntax as well as the semantics (static & dynamic) of StooJas to support static methods and give a
detailed explanation for the necessary adjustments.

c) Extend the syntax as well as the semantics (static & dynamic) of StooJas to support static variables and give a
detailed explanation for the necessary adjustments.

Exercise 5 Prototyping (optional)

The following exercise will not be discussed in the exercise hours.

In this exercise, we will encode the class-based approach to object-orientation using prototyping. First of all, have a
look at the wikipedia page about prototype-based programming:
(http://en.wikipedia.org/wiki/Prototype-based_programming).

In pure prototyping there are no visible pointers or links to the original prototype from which an object is cloned.
The prototype object is copied exactly, but given a different name (or reference). Behavior and attributes are simply
duplicated as-is.

We want to implement the University Administration System from the lecture using prototyping with a class-based
approach. As we want to do this in the (familiar) Java language, which offers no direct support for prototyping, we
present a small library to provide prototyping facilities. Furthermore, we restrict the library user from using certain
Java features. In fact, you are only allowed to use pre-defined (Java) types. However, it is allowed to create anonymous
classes which are direct subtypes of the Function class. You are not allowed to use reflection.

public final class ProtoObj {
/** Initial object */
public static final ProtoObj INIT_PROTO = new ProtoObj();

/** Tests whether the object has the given property */
public final boolean hasProperty(String name) { ... }

/** Set the property with name propertyName to the given value.
If no such property exists, it is created. */

public final void setProperty(String propertyName, Object value) { ... }

/** Gets the value of the property with name propertyName */
public final Object getProperty(String propertyName) { ... }

/** Gets the value of the (function) property with name functionName.
* This is just a convenience method to avoid casting. */
public final Function getFunction(String functionName) { ... }

/** clone this object (copy all properties) */
public final ProtoObj clone() { ... }

}

/** This class represents a function. To create a new function, override the run method */
public abstract class Function {
public abstract void run(ProtoObj self, Object...args);

}

a) To get familiar with the prototype-based programming approach, you can look at the following example (similar
to the one in the lecture):

ProtoObj vehicle = ProtoObj.INIT_PROTO.clone();
vehicle.setProperty("name", " ");
ProtoObj sportsCar = vehicle.clone();
sportsCar.setProperty("driveToWork", new Function() {
@Override
public void run(ProtoObj self, Object... args) {

System.out.println(self.getProperty("name") + " drives to work");
}

});
ProtoObj porsche911 = sportsCar.clone();
porsche911.setProperty("name", "Bobs Car");

// call the driveToWork method on the porsche911 object
porsche911.getFunction("driveToWork").run(porsche911);

b) Implement the University Administration System in the spirit of the provided Java sources (UAS.zip). You should
use the following template to implement the system (e.g. implement the methods call and newObject).

static ProtoObj PERSON_TYPE = ...
static ProtoObj STUDENT_TYPE = ...
static ProtoObj PROFESSOR_TYPE = ...
static ProtoObj ASSISTENT_TYPE = ...

public static void main(String...args) {
ProtoObj michi = newObject(PERSON_TYPE, "Michi");

http://en.wikipedia.org/wiki/Prototype-based_programming

ProtoObj john = newObject(STUDENT_TYPE, "John", 12345);
ProtoObj einstein = newObject(PROFESSOR_TYPE, "Prof. Einstein", 402, "AG Relativ");
ProtoObj peter = newObject(ASSISTENT_TYPE, "Peter", true);

ProtoObj[] people = {john, michi, einstein, peter};

for (ProtoObj p : people) {
call(p, "print");

}
}

public static void call(ProtoObj self, String functionName, Object...args) { ... }

public static ProtoObj newObject(ProtoObj type, Object...args) { ... }

	Reflection and Annotations
	Inheritance and Subtyping
	Super-Calls
	StoJas Extension
	Prototyping (optional)

