
15.06.10 1© A. Poetzsch-Heffter, TU Kaiserslautern

6. Concurrency and Distribution

Overview:

6.1 Thread-based concurrency

6.2 Message-based concurrency

6.3 Distributed OO-programming

The object-oriented paradigm supports concurrency
and distribution:

• Objects can work concurrently, communicating by
 messages (active objects).

• Objects can have different locations distributed to
 multiple computers.

That is, objects could be the basis for concurrency.

In practice, however,

• local concurrency is expressed by threads
 (Ausführungsstränge), i.e. „objects are executed“,

• non-local concurrency is handled by mechanisms
 for remote method invocation (entfernter Methoden-
 Aufruf).

15.06.10 2© A. Poetzsch-Heffter, TU Kaiserslautern

6.1 Thread-based Concurrency

Most modern OO-languages use threads to express
concurrent behavior. We discuss here the thread-
model of Java.

Explanation: (Thread)

A thread is an abstract entity that

• is created at program start or by special statements,

• can terminate, wait, block, ...

• executes statements of a program (action),

• leads to a sequence of actions modifying the state,

• can communicate with other threads

• have a local state and can access global state,

• can run interleaved or in parallel with other threads.

Remark:

Thread-models essentially differ in how they realize
the above six aspects in the programming language
and its implementation model.

15.06.10 3© A. Poetzsch-Heffter, TU Kaiserslautern

Java-Threads:

• Threads are represented by objects of class Thread.
This allows to create and control them like any other

 object.

• The special method “start” starts new threads and
 returns immediately.

interface Runnable {

 void run();

}

class Thread implements Runnable

{

 Thread(Runnable target){ … }

 ...

 void run(){ … }

 native void start();

 void interrupt(){ … }

 ...

}

15.06.10 4© A. Poetzsch-Heffter, TU Kaiserslautern

Example: (Java-Threads)

class Printer implements Runnable {
 String val;
 Printer(String s) { val = s; }
 void run() {
 while(true)
 System.out.println(val);
 }
}

new Thread(new Printer("One")).start();

new Thread(new Printer("Two")).start();

new Thread(new Printer("Three")).start();

“Three”

“Three”

“Three”

“Three”

“One”

“One”

“Two”

15.06.10 5© A. Poetzsch-Heffter, TU Kaiserslautern

Semantical Aspects of Threads

The language semantics should describe the allowed
behaviors of a multi-threaded program. Two
problems:

- weak semantics to enable optimizations by the
 compiler and runtime system

- insufficient synchronization by the user

Access to common resources, such as variables can
lead to unwanted behavior.

Enter e.next
Read 0
Write 1

Enter e.next
Read 1
Write 2

Read 2

class Even {

 private int x;

 void next() {

 x++; x++;

 }

}

Read 2
Write 3

Write 3

Example:

15.06.10 6© A. Poetzsch-Heffter, TU Kaiserslautern

Explanation: (Shared Variables)

Variables that can be accessed from different threads
are called shared (heap memory/variables). They are
denoted by x, y... in the following. Shared are in Java:

- instance fields

- static fields

- array elements

Local variables and parameters are not shared. They
are denoted by r1, r2, ... in the following.

Two accesses to the same variable are said to be
conflicting if at least one is a write.

Examples: (Incorrectly Synchronized Programs)

A. Original code:

Initially: x == y == 0.

Can this result in r2 == 2 and r1 == 1 on termination?

Thread 1 executes: Thread 2 executes:

1. r2 = x;
2. y = 1;

1. r1 = y;
2. x = 2;

15.06.10 7© A. Poetzsch-Heffter, TU Kaiserslautern

It can! Compiler may transform the statements to:

Initially: x == y == 0.

Can result in r2 == 2 and r1 == 1.

Thread 1 executes: Thread 2 executes:

1. y = 1;
2. r2 = x;

1. r1 = y;
2. x = 2;

B. Original code:

Initially: x == y , x.a == 0.

Can this result in r2 == r5 == 0 and r4 == 3 on
termination?

Thread 1 executes: Thread 2 executes:

1. r1 = x;
2. r2 = r1.a;
3. r3 = y;
4. r4 = r3.a;
5. r5 = r1.a;

1. r6 = x;
2. r6.a = 3;

15.06.10 8© A. Poetzsch-Heffter, TU Kaiserslautern

It can! Compiler may transform the statements to:

Initially: x == y , x.a == 0.

Can result in r2 == r5 == 0 and r4 == 3 on termination.

Thread 1 executes: Thread 2 executes:

1. r1 = x;
2. r2 = r1.a;
3. r3 = y;
4. r4 = r3.a;
5. r5 = r2;

1. r6 = x;
2. r6.a = 3;

Synchronization in Java

Synchronization

- restricts the freedom of the compiler and

- guards access to statements.

Java supports two synchronization mechanisms:

• locks on objects: Every object has a lock.
 Every lock or unlock action of a thread T
 is a synchronization action of T.

• volatile instance variables: Every read and write
 of a volatile variable is a synchronization action.

(Further synchronization actions are related to the start
and the termination of a thread.

15.06.10 9© A. Poetzsch-Heffter, TU Kaiserslautern

Conceptual Memory Model for Java:

The precise thread semantics of Java is very complex.

We consider a simplified explanation.
(cf. old memory model of Java Lang. Spec., Sect. 17)

There is a main memory that is shared by all threads.
It contains the master copy of every shared variable.

Every thread has a working memory in which it keeps
its own working copy of variables that it must use or
assign. As the thread executes a program, it operates
on these working copies.

There are rules about when a thread is permitted or
required to transfer the contents of its working copy
of a variable into the master copy or vice versa. E.g.:

- Lock/unlock actions by T cause synchronization of
 working memory of T with main memory.

- Access to a volatile variable causes synchronization
 with main memory.

15.06.10 10© A. Poetzsch-Heffter, TU Kaiserslautern

The actions are atomic (indivisible) and have
the following meaning:

Thread actions:

use(a): vm-instruction gets value of variable a
 from working memory.

assign(a): vm-instruction sets variable a in working
 memory.

load(a): sets variable a in working memory after a
 read(a) by the memory memory.

store(a): provides value of variable a from working
 memory for a write into main memory.

Actions of main memory:

read(a): provides the value of variable a from main
 memory for a paired load action of a thread .

write(a): puts the given value v into main memory
 variable a (paired with a store(a)).

Joint actions:

lock(X): causes a thread to lay one claim on the
 lock for X.

unlock(X): causes a thread to release one claim on
 the lock for X.

15.06.10 11© A. Poetzsch-Heffter, TU Kaiserslautern

There are a number of rules that restrict possible
concurrent executions of actions, for example:
• all locks and unlocks are performed in some
 total sequential order

• reads and loads for a variable occur as pairs

• stores and writes for a variable occur as pairs

• new variables are created in main memory, i.e.
 a thread must perform a load or assign action
 before using the new variable.

Despite these rules, there is still a lot of freedom for

a virtual machine to implement the thread-model.

Example: (Working memory)

class SoWas {
 private int v = 1, w = 1;
 void krk() {
 v = v + 1 ;
 w = v ;
 }
 }

Consider two threads having a reference to the
same SoWas-object X with X.v == 1 and X.w == 1.

What can happen if both threads execute krk?

15.06.10 12© A. Poetzsch-Heffter, TU Kaiserslautern

load(X.v)

use(X.v)

assign(X.v)

use(X.v)

assign(X.w)

load(X.v)

store(X.v)

must be executed

need not be executed

S1:

S2:

Thread S:

S3:

S4:

S5:

S6:

S7:

Thread T:

read(X.v)

MS1:

write(X.v)

MS2:

store(X.w)

S8:

read(X.v)

write(X.w)

MS4:

MS3:

load(X.v)

use(X.v)

assign(X.v)

use(X.v)

assign(X.w)

load(X.v)

store(X.v)

T1:

T2:

T3:

T4:

T5:

T6:

T7:

store(X.w)

T8:

read(X.v)

MT1:

write(X.v)

MT2:

read(X.v)

write(X.w)

MT4:

MT3:

Main memory:

15.06.10 13© A. Poetzsch-Heffter, TU Kaiserslautern

Locking in Java:

An object X is either unlocked (lock count 0) or locked
by one thread T a number of times (lock count N).
If T has locked X, we say T owns the lock of X.

• If X is not locked and T wants to lock X, X is locked
 with T as owner of the lock.

• If T owns the lock of X and wants to lock X (again),
 the lock count of X is incremented by 1.

• If T owns the lock of X and thread S (≠ T) wants to
 lock X, S is blocked until the lock is relinquished
 by T (i.e. lock count is 0).

Java does not provide explicit lock/unlock operations.
Locking is done by the synchronization statement:

synchronized (Expression) Block

The expression has to yield an object X.

The executing thread tries to lock X. At the end of
the block an unlock operation is performed on X.

To simplify notation one can write for example:

 synchronized void mm() Block

instead of

 void mm(){ synchronized(this) Block }

15.06.10 14© A. Poetzsch-Heffter, TU Kaiserslautern

Volatile versus Synchronized Blocks:

class Test {
 static int i = 0, j = 0;
 static void one(){ i++; j++;}
 static void two(){
 System.out.println(i, j);
} }

class Test {
 static int i = 0, j = 0;
 static synchronized void one(){ i++; j++;}
 static synchronized void two(){
 System.out.println(i, j);
} }

Thread 1 executes method one.
Thread 2 executes method two.

Can j be greater than i in an output?

class Test {
 static volatile int i = 0, j = 0;
 static void one(){ i++; j++;}
 static void two(){
 System.out.println(i, j);
} }

15.06.10 15© A. Poetzsch-Heffter, TU Kaiserslautern

Correct Synchronization:

Let P be a program and EX(P) an execution of P.
The thread semantics defines a happens-before
relation on the actions of EX(P). We illustrate that
relation by example.

x = 1

lock m

Thread 1

y = 1

unlock m

Example: (Happens-before relation)

r1 = y

lock m

Thread 2

r2 = x

unlock m

In this execution, all conflicting accesses to x and y
are ordered w.r.t. the happens-before relation.

15.06.10 16© A. Poetzsch-Heffter, TU Kaiserslautern

x = 1

lock m

Thread 1

y = 1

unlock m

r1 = y

lock m

Thread 2

r2 = x

unlock m

In this exection, the conflicting accesses to x are
not ordered w.r.t. the happens-before relation.

15.06.10 17© A. Poetzsch-Heffter, TU Kaiserslautern

Explanation: (Correctly synchronized)

A program execution is sequentially consistent iff

- all individual actions are totally ordered,

- the order is consistent with the program order,

- each action is atomic, and

- each action is immediately visible to all threads.

A program execution contains a data race iff there
are two conflicting accesses that are not ordered by
the happens-before relation.

A program is correctly synchronized iff all
sequentially consistent executions are free of data
races.

Remark:

• The behavior of incorrectly synchronized programs
 may be very different from the expectations (see
 above).

• The programmer is responsible to guarantee that
 programs are correctly synchronized.

15.06.10 18© A. Poetzsch-Heffter, TU Kaiserslautern

Critical Sections

Similar to concurrent procedural programming,
data races are avoided by using mutual exclusion
on critical sections:

Example: (Object related mutual exclusion)

class Even {

 private int x;

 synchronized void next() {

 x++; x++;

 }

}

Unlike procedural programming, mutual exclusion
is only w.r.t. threads locking the same object:

The following class Even does not guarantee
that x is always even outside next:

class Even {

 private static int x = 0;

 synchronized void next() {

 x = x+1; x++;

 }

}

15.06.10 19© A. Poetzsch-Heffter, TU Kaiserslautern

Designing Synchronization:

Locking and Encapsulation:

Problems:

• related variables that are modified by several
 methods

• cooperation of threads

• fairness/starvation

• deadlock prevention

Declaring methods as synchronized is in general
not sufficient to achieve well-behavior of concurrent
programs.

Usually, it does not suffice to lock only one object.
Sometimes, a transactional behavior is needed.

Example: (Insufficient synchronization)

Consider a bank with offices sharing the accounts:

class Bank {
 protected Account[] accounts;
 class Account { int bal = 0; }

 Bank() { accounts = new Account[3];
 accounts[1] = new Account();
 accounts[2] = new Account();
} }

15.06.10 20© A. Poetzsch-Heffter, TU Kaiserslautern

class BankOffice extends Bank {

 BankOffice(Bank centralOffice) {
 accounts = centralOffice.accounts;
 }

 synchronized void
 deposite(int accno, int amount) {

 accounts[accno].bal += amount ;
 }

 synchronized boolean
 transfer(int from, int to, int amount) {

 if(accounts[from].bal >= amount) {
 int newBal = accounts[from].bal – amount;
 // possible interrupt: Thread.yield();
 accounts[from] = newBal;
 accounts[to] += amount;
 return true;
 }
 return false;
 }

 synchronized void printBalance12() {
 System.out.
 println("Account[1]: "+accounts[1].bal+
 "\t Account[2]: "+accounts[2].bal);
 }
}

15.06.10 21© A. Poetzsch-Heffter, TU Kaiserslautern

public class BankTest {
 static Bank b0 = new Bank();
 static BankOffice b1 = new BankOffice(b0);
 static BankOffice b2 = new BankOffice(b0);

 public static void main(String[] argv){

 b1.deposite(1, 100);
 b1.printBalance12();

 b2.deposite(2, 100);
 b2.printBalance12();

 Thread t1 = new Thread() {
 public void run(){
 while(true) {
 b1.transfer(1, 2, 20);
 b1.printBalance12();
 } }
 };
 Thread t2 = new Thread() {
 public void run(){
 while(true) {
 b2.transfer(2, 1, 50);
 b2.printBalance12();
 yield();
 b2.transfer(1, 2, 30);
 b2.printBalance12();
 } }
 };
 t1.start();
 t2.start();
 }
}

15.06.10 22© A. Poetzsch-Heffter, TU Kaiserslautern

The above example shows that synchronizing
methods is not sufficient.

 A lock or several locks are needed that
 protect all needed resources.

Instead of the solution above one can use a lock
for each account:

Example: (Multiple locks)

boolean
transfer(int from, int to, int amount) {
 synchronized(accounts[from]) {
 synchronized(accounts[to]) {
 ...
 } }
}

Notice, however, that multiple locks create deadlock
problems! For example, the above method transfer
easily lead to a deadlock, if transfers from a to b and
b to a are interleaved.

15.06.10 23© A. Poetzsch-Heffter, TU Kaiserslautern

Like in conventional concurrent programming
locks should be obtained in a well-defined order.

To avoid the deadlock problem with transfer, we
order the locks on accounts according to their
account number:

Example: (Order on Locks)

boolean
transfer(int from, int to, int amount) {
 // requires from != to
 Object one, two;
 if(from < to) {
 one = accounts[from]; two = accounts[to];
 } else {
 one = accounts[to]; two = accounts[from];
 }
 synchronized(one) {
 synchronized(two) {
 ...
 } }
}

• Fairness is difficult to achieve in languages like Java.

• A special wait/notify-mechanism supports cooperation
 between objects.

Remark:

15.06.10 24© A. Poetzsch-Heffter, TU Kaiserslautern

6.2 Message-based Concurrency

To avoid the disadvantages of thread-based
concurrency, many alternative approaches are

investigated in the literature.

Explanation: Message-based concurrency)

We speak of message-based concurrency if

• the state space is separated into disjoint components

• the components only communicate over messages

• synchronization is defined in terms of sending and
 receiving messages.

Remark:

Message-based concurrency can be combined with
multi-threading.

Overview:

We consider:
- asynchronous message passing
- synchronous message passing
and discuss implementations in Java.

15.06.10 25© A. Poetzsch-Heffter, TU Kaiserslautern

Four components:
- AirConditioner: interface to switch its mode of
 operation (OFF, HEATING, COOLING)
- ThermoSensor: sensor providing current temperature
- Thermostat: active component that
 - reads current temperature
 - compares it to desired temperature
 - switches mode of operation of AirConditioner
 if necessary
 - notifies ControlPanel if changes have occurred
- ControlPanel (active component): displays current
 status and allows to in- and decrement desired temp.

Example: (ThermoControl systems)

15.06.10 26© A. Poetzsch-Heffter, TU Kaiserslautern

Asynchronous Messages

Communication via asynchronous messages is
similar to communication by email:
 -- message queues at the receiver site
 -- receiver determines when she reads messages
 or whether messages are read at all

All communication partners have to be active
components.

In the figure, message queues are represented
by hatched connectors.

15.06.10 27© A. Poetzsch-Heffter, TU Kaiserslautern

All synchronization happens at the message queues.
They can be implemented by library classes, i. e.
application independent expert code.

Example: (Use of message queues)

Possible implementation of ThermoSensor using
java.util.concurrent.LinkedBlockingQueue:

class ThermoSensor
 extends LinkedBlockingQueue<GetTemp>
 implements Runnable
{
 BlockingQueue<TempMsg> outmess;
 double measuredTemperature; // set by environment

 ThermoSensor(BlockingQueue<TempMsg> outmess){
 super(); this.outmess = outmess;
 new Thread(this).start();
 }
 public void run() {
 while(true){
 try {
 take();
 outmess.put(
 new TempMsg(MsgKind.currentTemp,
 (int)measuredTemperature));
 } catch(InterruptedException ie) {}
 }
 }
 }
}

15.06.10 28© A. Poetzsch-Heffter, TU Kaiserslautern

Discussion:

Message queues play the role of connectors

between components.

If threads are only component-local, data races
and issues of thread-safety are avoided.

Components have better control over incoming
messages/methods.

Disadvantage: Indirection caused by messages
cause loss of efficiency.

Disadvantage: Closer coordination between
components is more difficult to achieve.

Programming message passing systems:

Support by libraries and frameworks (e.g. Java

Message Service JMS)

Language extensions for message support (JCoBox)

As basic mechanism in the language (Erlang)

15.06.10 29© A. Poetzsch-Heffter, TU Kaiserslautern

JCoBox

extends Java with new concurrency concept:

 -- CoBox classes: @CoBox annotation
 structure the heap similar to ownership

 -- cooperative task scheduling:
 -- one active task per cobox
 -- active task has to yield control (not interrupted
 by scheduler

 -- asynchronous method calls: x!m(e)
 -- immediately return to the caller
 -- create new task in cobox of receiver

 -- futures: Future<ResultType> f;
 provide a location for results of asynchronous
 method calls; reading the result:
 -- f.await(); // suspends until result is available
 -- f.get(); // blocks the current task

15.06.10 30© A. Poetzsch-Heffter, TU Kaiserslautern

Example: (Simple CoBox program)

@CoBox // the @CoBox annotation
class Ping {
 Pong pong;
 boolean stopped;
 Ping(Pong p) {
 pong = p;
 this!go(); // asynchronous self-call
 // starts internal task
 }
 void go() {
 stopped = false;
 while (! stopped) {
 Fut<String> fut = pong!ping("Hello");
 String answer = fut.await();
 // allowing stop calls to be executed
 System.out.println(answer);
 } }
 void stop() { stopped = true; }
}

@CoBox
class Pong {
 String ping(String s) { return s+" World"; }
}

class Main {
 public static void main(String... args) {
 // at this point we are in the ROOT cobox
 Pong pong = new Pong();
 Ping ping = new Ping(pong);
 JCoBox.sleep(5, TimeUnit.SECONDS);
 ping.stop();//equivalent to: pong!stop().get();
 }
}

15.06.10 31© A. Poetzsch-Heffter, TU Kaiserslautern

Synchronous Messages

Synchronous message passing is based on a
rendezvous between sender and receiver:

 -- Messages are only sent if both sender and receiver
 are ready to perform the communication.

 -- If only one is ready, the other one is blocked.

All communication partners have to be active
components.

In the figure, connectors represent synchronous
channels.

15.06.10 32© A. Poetzsch-Heffter, TU Kaiserslautern

Behavior is modeled by the following
interface automata:

Transitions with send messages m! may only be
taken synchronously with corresponding receive
messages m? in a component that is linked by a
channel for m.

15.06.10 33© A. Poetzsch-Heffter, TU Kaiserslautern

Remarks:

Synchronous communication has the advantages of
asynchronous communication and simplifies to

express close coordination.

Disadvantage: Danger of deadlocks is higher.

Synchronous communication underlies many
communication models:
 -- Programming languages, e.g. Ada tasks
 -- Calculi:
 -- Communicating sequential processes CSP
 -- Calculus of communicating systems CCS
 -- π -calculus
-- Interface automata

In Java, synchronous communication can be
achieved by using class SynchronousQueue<E>
of package java.util.concurrent in which
each put-operation must wait for a corresponding
take-operation, and vice versa.

A synchronous queue does not have any internal
capacity, not even a capacity of one.

15.06.10 34© A. Poetzsch-Heffter, TU Kaiserslautern

Distributed programming is about programs that
run in different OS-processes/on different machines.

Central to distributed programming are the means
of communication. Most OO-languages or frame-
works support:

• communication over sockets and streams

• remote method invocation, a synchronous
 communication technique

Some support in addition:

• events, signals

• asynchronous messages

• group and multicast communication

Notice:

Distributed programs are usually concurrent programs.

Remote Method Invocation in Java

6.3 Distributed OO-Programming

• Methods of objects in other processes (remote objects)
 can be invoked, similar to methods on local objects

• Without additional code, only one thread can invoke
 remote methods, others are blocked.

15.06.10 35© A. Poetzsch-Heffter, TU Kaiserslautern

Relalization: Stubs and Skeletons:

• Remote objects are represented locally by stubs

• Stubs and skeletons provide communication

• Code for stubs and skeletons is automatically

generated by the Java compiler

Process 1
(Client)

Process 2
(Server)

obj :Remote
Object

Stub

Serialized
parameters
and results Skeleton

Overview:

• Realization: Stubs and skeletons

• Remote interfaces and their implementations

• Binding and lookup of remote objects

• Invoking remote methods

• Parameter passing

15.06.10 36© A. Poetzsch-Heffter, TU Kaiserslautern

Remote Interfaces and their Implementation:
• Methods that are available remotely must be specified
 in an interface that extends Remote:

interface Remote { }

interface Buffer extends Remote {
 void put(Prd p) throws RemoteException;
 Prd get() throws RemoteException;
}

Example: (Remote object implementation)

Buffer that can be accessed remotely:

• Implementations of remote objects extend
UnicastRemoteObject (or similar classes)

• Constructors may throw exception
• Almost identical to local implementations

class BufferImpl extends UnicastRemoteObject
 implements Buffer {

 // fields identical to local solution;

 BufferImpl() throws RemoteException { }

 synchronized void put(Prd p)

 { // identical to local solution }

 synchronized Prd get()

 { // identical to local solution }

}

15.06.10 37© A. Poetzsch-Heffter, TU Kaiserslautern

Programming Infrastructure:

Client Code
Server Code

• Remote
interfaces

• Parameter and
result types
(serializable)

Implementations of
remote interfaces

Compiler

Server Program
(incl. Skeletons)

Compiler

Client Program
(incl. Stubs)

15.06.10 38© A. Poetzsch-Heffter, TU Kaiserslautern

Binding and Lookup of Remote Objects:

• References to remote objects are obtained through
 a name service

• Name server (rmiregistry) must run on server site
– Offers service at a certain port
– Communication with name server is enabled by

API

• Process of remote object binds remote object to
 a name.

• Potential invoking object gets reference through
 method lookup using an URL.

class Naming {

 static void rebind(String name,Remote obj)

 throws ... { ... }

 static Remote lookup(String name)

 throws ... { ... }

 ...

}

15.06.10 39© A. Poetzsch-Heffter, TU Kaiserslautern

Example: (Binding and Lookup)

class BufferServer {

 static void main(…) throws Exception {

 Naming.rebind("buffer",

 new BufferImpl());

 }

}

class Producer extends Thread {

 …

 static void main(…) throws Exception {

 String url = "rmi://monkey/buffer";

 Buffer b = (Buffer) Naming.lookup(url);

 new Producer(b).start();

 }

}

Buffer server binds a buffer to name „buffer“:

Producer looks up and links to the remote buffer object:

Invoking Remote Methods:

Remote references can be used like a local
reference, in particular to invoke a method.

15.06.10 40© A. Poetzsch-Heffter, TU Kaiserslautern

• Remote interfaces can be used to invoke methods
of remote objects

• Communication is transparent except for

– Error handling

– Problems of serialization

• Coding is almost identical to local solutions

class Producer extends Thread {

 Buffer buf;

 Producer(Buffer b) { buf = b; }

 void run() {

 while (true)

 try {

 buf.put(new Prd());

 } catch(Exception e) { ... }

 }

}

Remark:

Example: (Invocation of remote methods)

15.06.10 41© A. Poetzsch-Heffter, TU Kaiserslautern

Process Interaction:

Process 1

Process 3
:Producer

:BufferImpl
Stub

Skeleton
Process 2

:Consumer

Stub

15.06.10 42© A. Poetzsch-Heffter, TU Kaiserslautern

Summary: Using RMI in Java:

 Define interface of remote object

 (extends Remote)
 Define implementation of remote object

 (extends UnicastRemoteObject)
 Start name server (rmiregistry)
 Server program registers remote objects

 at registry
 Client programs retrieve remote reference

 through URL (name of computer and name

 of remote object)

Parameter Passing:

Parameter passing is essentially done by serialization,
however:

• all parameters are serialized as if they form a
 connected object structure (duplicates are copied
 only once)
• references to remote objects (more precisely to
 the stubs) are handled by

 - using the reference to the remote object, if it belong
 to the process of receiver object

 - creating a new stub on the remote side, otherwise

15.06.10 43© A. Poetzsch-Heffter, TU Kaiserslautern

• Parameters of one remote method invocation are
serialized together

• Aliases do not lead to duplicate objects

Process 1

x

y

z

null

‘F’

remoteObj.m(x, x, y, z);

 Process 2

x’ y’

null

p1 p2 p3

Example: (Passing parameters)

Stub

Call: Formal parameters:

p4

