
Predicate Transformation as a Proof Strategy

Nicole Rauch1 and Arnd Poetzsch-Heffter2

1 rauch@informatik.uni-kl.de

Universität Kaiserslautern, Germany
2 poetzsch@informatik.uni-kl.de

Universität Kaiserslautern, Germany

Abstract. A verification strategy implementing precondition genera-
tion is presented. It automatically constructs a weak precondition for
the statements of a Java subset. The strategy uses the rules of an under-
lying Hoare logic.

1 Introduction

The verification of object-oriented programs is a complex task. Subtyping, ab-
straction, frequently used method calls, and implementation encapsulation make
it more difficult than verification of simple imperative programs. As fully auto-
matic proving is in general not feasible, we are looking for techniques that auto-
mate the easier proof steps and enable the user to solve the others interactively.

A classical technique to combine user-guided proofs with automated veri-
fication are so-called strategies. Strategies3 can be considered programs that
construct parts of a proof tree by applying axioms and rules of the underlying
logic. Interactive theorem provers like PVS or Isabelle/HOL use strategies that
operate on higher-order logic (e.g. in PVS, a strategy is a Lisp program that
attempts to construct a proof tree for the higher-order logic underlying PVS).
For a Java subset, we built an interactive program prover, called Jive ([10]),
that is based on a Hoare logic ([18]). Jive supports a strategy mechanism for
the automated verification of program proofs.

Position In contrast to a widely accepted assumption that weakest precondition
generation is the technique a program prover has to be built around, we argue
in this paper that a Hoare logic combined with a strategy mechanism is a better
design choice when it comes to the construction of provers for more complex
programming languages. The main arguments are as follows:

1. wp-transformation can be implemented as a strategy, i.e. Hoare logic com-
bined with a sufficiently powerful strategy mechanism can do everything that
a “hardwired” wp-transformer can do.

2. Strategies are more flexible. In particular, wp-transformations can be mixed
with interactive proof steps.

3 Strategies are sometimes called tacticals.

3. A correct Hoare logic is easier to design than a correct wp-calculus. In par-
ticular, sharp wp-transformations for dynamic method invocations are a dif-
ficult problem (see [2, 13] for the meaning of sharp here).

4. The relations between method specifications in super- and subclasses can be
handled in a Hoare logic, but are not part of a wp-calculus.

In the rest of the paper, we concentrate on the first argument. We present a strat-
egy that implements a weak precondition transformer. The produced precondi-
tion is weakest for all statements except for the while-loop and the method invo-
cation statement. Along with the presentation, the flexibility gained by strategies
will be explained, i.e. the second argument will be illustrated.

A detailed discussion of the last two arguments is beyond the scope of this
paper. Here, we can only sketch the ideas underlying these issues. There are
some interesting results about sharp rules (see in particular [13]). However, they
have to be complemented with invariant information for the heap, in order to
yield the weakest precondition for Java statements. E.g. an object allocated
in a prestate of a method is as well allocated in the poststate of the method.
The second issue is related to behavioral subtyping. Since a wp-calculus is only
concerned with statements, a prover built around such a calculus has to enforce
behavioral subtyping by extra means. As shown in [17], a Hoare logic can capture
this aspect directly. I.e. behavioral subtyping becomes part of the object logic
and has not to be enforced by meta logical mechanisms. In some sense, this
gives more flexibility. In particular, it allows to derive properties of superclass
methods from the properties of the subclass methods.

Related Work In the limited scope of this paper, we can only discuss alterna-
tive solutions to the construction of verification tools for complex programming
languages.

The ancestor of most work on program provers is the Stanford Pascal Verifier
([9]), a wp-prover for Pascal. It had a strong influence on many other program
provers. Penelope is a program prover for an Ada subset (no dynamic data types,
no recursive methods, no abstraction) based on weakest precondition transfor-
mation ([5]) combined with so-called simplification directives. Simplification di-
rectives are inserted into the program. They “make the proof not only easier to
complete but also more apt to replay when changes are made to the program”
(p. 1069). From our point of view, simplification directives are an interesting
means to include information about the proof strategy into the program.

The Extended Static Checker for Java ([7]) automatically checks Java pro-
grams against specifications. It uses a transformation of Java programs to a
guarded command language and performs predicate transformation based on this
language ([8]). As the declared goal of ESC/Java is to achieve full automation,
sacrificing completeness and specification power, the successful use of predicate
transformation in this approach does not contradict our position.

The Loop tool ([1]) is a verification tool for Java programs following the
same goals that we have, but with a different approach. It translates a specified
Java program into a PVS theory that captures the structural and semantical

aspects of the program. Whereas we do the proofs based on the programming
logic within our Jive tool4, the Loop approach transfers all proof obligations to
PVS and uses PVS strategies for proving. To simplify the proof task, a Hoare
style reasoning system is used in this semantic setting ([6]). According to per-
sonal communication, the developers of the Loop tool are interested as well in
developing predicate transformation based on the Hoare rules, implemented as
strategies in PVS.

There are other approaches to embed the program verification task into a
general theorem prover, most notably the embedding of Java into Isabelle/HOL
([14]). The typical pattern of these embeddings is to use the strategy mechanism
of the underlying theorem prover to formulate program proof strategies.

Very interesting and complex applications of strategies for a Hoare logic in
the sense of this paper are given in [12]. These strategies construct proofs for
composed programs from proofs of the program parts. The focus of this work is
on modularity.

Overview Section 2 summarizes the language and logic supported by the Jive
system and explains what a strategy is. Section 3 presents our precondition
transformation strategy and its relation to the logic.

2 Verifying Java: Logic and Strategies

The Jive system supports the verification of programs written in a sequential
Java subset called Java-KE. The subset encompasses basic data types, interface
and class types, subtyping and inheritance, dynamic binding, most statement
kinds in a simplified form, and expressions without side-effects. The implemen-
tation of exception handling is not yet finished, but is already supported by the
logic and strategies described here.

Logic As logic, we use a partial correctness Hoare logic. A predecessor of the logic
is published in [17]. The current version of the logic together with a soundness
and completeness proof will be available soon (see [18]). Formulas of the Hoare
logic are sequents of the form A

∣∣B { P } com { Q } where A is a set of assump-
tions, P and Q are sorted first-order formulas and com is either a method or a
statement. The assumptions are used to handle recursive methods. As we will
not need them for this presentation, they are dropped in the following; i.e. we
only consider triples of the form { P } com { Q }. To understand the following
presentation, we assume that the reader is familiar with Hoare logic. Here, we
only explain how the object store (or heap) is modeled and how exceptions are
handled.

The object store is considered a global program variable denoted by $. The
variable $ can be used in pre- and postconditions and holds values of type Store.
Type Store is an abstract data type with the following operations:
4 The remaining first-order logic proofs are done in PVS.

〈 := 〉 : Store × InstVar ×Value → Store
〈 〉 : Store × TypeId → Store
() : Store × InstVar → Value

alive : Value × Store → Bool
new : Store × TypeId → Value

InstVar denotes the set of instance variables. OS 〈IV := V 〉 yields the object
store that is obtained from OS by updating instance variable IV with value V .
OS 〈T 〉 yields the object store that is obtained from OS by allocating a new
object of type T . OS (IV) yields the value of instance variable IV in store OS.
If V is an object reference, alive(V,OS) tests whether the referenced object is
alive in OS. new(OS ,TID) yields a reference to an object of type TID that is
not alive in OS. (An axiomatization of these operations is presented in [16].)

Another non-canonical feature of the logic is the treatment of exceptions. A
special program variable exc is assumed that is different from all other program
variables. It records whether an exception has occurred and if so, of what kind.
Normal termination of a statement can be expressed by the conjunct exc = null
in the postcondition. Abrupt termination of a statement with exception E can
be expressed by a conjunct exc = E in the postcondition. In prestates, the
semantics guarantees exc = null. In the logic, this is expressed by the so-called
exc-rule

{ P ∧ exc = null } com { Q }

{ P } com { Q }

The logic contains axioms for the primitive statements and rules for the
compound statements and methods as well as rules for adapting and reasoning
about pre- and postconditions (the above rule gives an example of the latter
kind).

Proofs and Strategies A proof is a tree that is constructed using the axioms
and rules of the logic. In a forward proof, the instantiation of an axiom yields a
primitive tree without subtrees. The application of a rule takes proof trees for
the premisses of the rule and constructs a new tree node by instantiating the rule
according to the premisses. In a backward proof, the proof tree is constructed
starting from the root. Given a triple as proof goal, a rule application reduces
this goal to subgoals. If a subgoal is an instantiation of an axiom, it is considered
to be closed.

Our system allows to combine forward and backward proofs. E.g. if we have a
proof tree for { P } com { Q } and if we have a proof tree where { P } com { Q }
is a subgoal, we can glue these two proof trees together.

In the Jive system, proof construction is fully encapsulated within a so-
called proof component. The component provides operations to inspect already
constructed proof parts. In particular, the triples and their statements can be

inspected. Proof construction is only possible by applying the logic’s rules and
axioms (in addition there is a glue operation). All operations first check whether
the corresponding rule application is correct. If so, the rule is applied, otherwise
the failures are reported (see [10]).

A strategy is a program outside the proof component that aims to construct
proofs. This can only be done by using the inspection and construction oper-
ations of the proof component. Thus, a strategy can never construct incorrect
proofs (assuming that the proof component is implemented correctly). In Jive,
strategies are Java programs that can be dynamically loaded into the system.
Having a full-fledged programming language to formulate strategies provides a
great deal of flexibility. Further details of the strategy mechanism are described
in [11].

3 Predicate Transformation as Interactive Strategy

In this paper we present a strategy which can verify a large part of Java-KE
constructs automatically. Given a statement s and postcondition Q, it generates
a weak precondition pwp(s,Q) and a proof for { pwp(s,Q) } s { Q }. In this
context, a precondition P1 is weaker than P2 iff P2 ⇒ P1. In many cases, e.g.
field-read or field-write, the strategy generates the weakest (liberal) precondition
(wp, wlp) [3, 4]. But e.g. in case of the while-loop the wlp rule, which is defined
recursively, cannot be applied. Thus, we do not always calculate the weakest
precondition but a precondition that is weak and at the same time practically
useful. We call this strategy “practical weak precondition generation” (pwp).

Correctness of our strategy is gained automatically as the generated precon-
ditions are immediately verified by our logic which has been proven to be sound
and complete (see [18]).

3.1 The pwp-Strategy

The pwp-strategy recursively calls substrategies. There is a substrategy for each
kind of statement, e.g. the substrategy pwp-seq works on statement sequences,
pwp-while treats while-loops and so on. By calling these substrategies, the ab-
stract syntax tree is recursively descended. At the leaves of the syntax tree, the
precondition is generated without further calls to substrategies. A proof tree
with a single node, represented by the triple { pwp(s,Q) } s { Q }, is created
by applying the appropriate axiom of the logic in forward direction, which at
the same time proves the generated precondition. This precondition is then used
by the calling substrategy to generate the precondition for its statement. The
calling substrategy also extends the generated proof tree. It adds a new root
node or joins two proof trees into one by applying a rule of the programming
logic in forward direction. In this way, the proof tree is built bottom-up.

Ideally, the strategy automatically builds the complete proof tree for a code
sequence and glues it to the already existing proof tree where the initial strat-
egy call started from. But, usually, user interaction is required for some of the
language constructs. Details are given below when explaining the substrategies.

3.2 pwp-Substrategies

This section lists some of the pwp-substrategies. There is one substrategy for each
statement. Here, we only explain the substrategies for some selected statements.

pwp-cast: This substrategy deals with one kind of terminals of the abstract
syntax tree: the cast-assignments. These are assignments which at the same
time perform a cast. To keep the programs to be verified more readable, the Jive
system allows to omit the cast “(T)” if the types of both sides of the assignment
are identical. In these cases the cast is implicitly added by the system.

The precondition is generated mainly by performing the required syntactical
substitutions, without any further invocations of substrategies. It is defined as
follows, where e is a side-effect-free expression, � denotes the subtype relation
and typeof() yields the static type of its argument:

pwp(“x = (T)e; ”,P) =def (typeof(e)�T ∧ P[e/x]) ∨
(typeof(e) 6�T ∧ P[$〈CastExc〉/$,new($, CastExc)/exc])

The pwp-cast substrategy generates a proof tree consisting of only one node
that is built from the generated precondition, the cast-assignment and the given
postcondition, by instantiating the cast-axiom of the logic.

cast-axiom:{
(typeof(e)�T ∧ P[e/x]) ∨
(typeof(e) 6�T ∧ P[$〈CastExc〉/$,new($, CastExc)/exc])

}
x = (T)e; { P }

This immediately proves the precondition, which is trivial in this case, and the
instantiated proof tree is returned to the substrategy that called pwp-cast.

The field-read, field-write, and object creation statements are treated in a
similar way.

The substrategies that are presented in the following each take one or more
proof trees and combine them into a new proof tree by placing them below a
new common root node. In case of a single proof tree, this tree is simply extended
by placing a new root node on top of the current one.

pwp-seq: When pwp-seq is called on a sequence s1 s2, it first calls the appropriate
substrategy on s2. This substrategy returns a proof tree t2 with root triple
{ pwp(s2,Q) } s2 { Q }. pwp-seq extracts the precondition from the tree and
uses it in calling the appropriate substrategy on the first child s1 of the code
sequence. That substrategy returns a proof tree t1. pwp-seq then applies the
seq-rule of the logic in forward direction5 to t1 and t2, which generates a new
common root node to the two trees. The precondition of t1 becomes the overall
5 For an explanation of using the rules of the logic in forward and backward direction

see [10].

precondition of the new proof tree, and the postcondition is the one the pwp-seq
substrategy was called with. Altogether, the precondition

pwp(“s1 s2”,Q) =def pwp(“s1”, (exc 6= null ∧ Q) ∨ (exc = null ∧ pwp(“s2”,Q)))

is generated. pwp-seq uses the seq-rule of the logic:

seq-rule:

{ P } s1 { (exc 6= null ∧ Q) ∨ (exc = null ∧ R) }
{ R } s2 { Q }

{ P } s1 s2 { Q }

The correctness of the generated precondition directly follows from the seq-rule.

pwp-catch: This substrategy treats try-catch-clauses. It calls the appropriate
substrategy on the code sequence s1 of the catch-statement and the overall
postcondition and uses the generated precondition to form a complex expression.
This expression is passed as argument to the substrategy that is then called in
order to prove the code sequence s0 of the try-statement. The two resulting
proof trees are combined into one by applying the logic’s catch-rule in forward
direction. The substrategy pwp-catch generates the following precondition:

pwp(“try{s0}catch(T e){s1}”,Q) =def pwp(s0, ((exc = null ∨ typeof(exc) 6�T) ∧Q)

∨ (exc 6= null ∧ typeof(exc)�T ∧ pwp(s1,Q)[null/exc, exc/e]))

We show the steps the strategy performs in the proof component of Jive.
Apart from two implications that are not dealt with in Jive, these steps are
implicitly known to be correct because they are performed by axioms and rules
of our logic. Thus, the following can be regarded as a proof of correctness of the
generated precondition. This proof mainly uses the catch-rule.

catch-rule:

{ P } s0

{
((exc = null ∨ typeof(exc) 6�T) ∧ Q)
∨ (exc 6= null ∧ typeof(exc)�T ∧ R)

}
{ R[e/exc] } s1 { Q }

{ P } try{s0}catch(T e){s1} { Q }

First, we determine the shape of the formula R used in the catch-rule:

{ pwp(s1,Q) } s1 { Q }
∗ pwp(s1,Q) ∧ exc = null⇒ pwp(s1,Q)

strengthening
{ pwp(s1,Q) ∧ exc = null } s1 { Q }
∗ pwp(s1,Q)[null/exc] ∧ exc = null⇒ pwp(s1,Q) ∧ exc = null

strengthening
{ pwp(s1,Q)[null/exc] ∧ exc = null } s1 { Q }

exc-rule
{ pwp(s1,Q)[null/exc] } s1 { Q }

{ pwp(s1,Q)[null/exc][exc/e]︸ ︷︷ ︸
≡R

[e/exc] } s1 { Q }

The proof obligations marked with ∗ are valid for all applications of the strategy
and can be discharged automatically. The next step is to apply the catch-rule to
this result:

pwp(s0, ((exc = null ∨
typeof(exc) 6�T) ∧ Q) ∨
(exc 6= null ∧
typeof(exc)�T ∧
pwp(s1,Q)[null/exc, exc/e]))

 s0

((exc = null ∨
typeof(exc) 6�T) ∧ Q) ∨
(exc 6= null ∧
typeof(exc)�T ∧
pwp(s1,Q)[null/exc, exc/e])

{ pwp(s1,Q)[null/exc, exc/e][e/exc] } s1 { Q }

catch-rule
{ pwp(“try{s0}catch(T e){s1}”,Q) } try{s0}catch(T e){s1} { Q }

ut
This immediately yields the correctness of the generated precondition and the
proof tree resulting from the application of pwp-catch.

pwp-while: This substrategy relies on a loop invariant I. First, it asks the user
for this invariant such that I∧e ⇒ pwp(“s”, I) and I ∧ (exc 6= null ∨ ¬e) ⇒ Q
hold, where Q is the given postcondition, e is the loop condition, an expression
without side-effects, and s is the loop body. (One could also imagine that the
user annotates some loops of the program with loop invariants before starting
the verification.) The substrategy calls the appropriate substrategy for the loop
body. Then, it creates a new proof tree by applying the while-rule of the logic
in forward direction.

The precondition generation is based on the transformer proposed by Gries
[4, p. 144]. This is not the weakest liberal precondition but implies it.

pwp(“while(e){s}”,Q) =def I

This is the while-rule of the logic:

while-rule:

{ e ∧ I } s { I }

{ I } while(e){s} { (exc 6= null ∨ ¬e) ∧ I }

We show the validity of the generated precondition:

{ pwp(“s”, I) } s { I }
∗ I ∧ e ⇒ pwp(“s”, I)

strengthening
{ e ∧ I } s { I }

while-rule
{ I } while(e){s} { (exc 6= null ∨ ¬e) ∧ I }
∗ I ∧ (exc 6= null ∨ ¬e) ⇒ Q

weakening
{ I } while(e){s} { Q }

ut
The user has to verify the implications marked with ∗ (in Jive, PVS is used

for this purpose).

pwp-invocation is derived from Gries [4, Chap. 12]. The substrategy uses the
specification { P } T:m(par) { R } of the invoked method m where T represents
the static type of the target expression. This triple denotes the specification of the
virtual method T:m expressing the properties of all methods that can possibly be
executed by an invocation y.m(e). (For a detailed discussion of virtual methods
and Hoare logic see [16].)

The pwp-invocation substrategy basically takes the precondition of the method
specification, with some slight modifications, as precondition of the method in-
vocation site. To be able to do this, it has to guarantee that the postcondition
of the method specification implies the specification at the invocation site. This
implication must hold for a suitable set of results and object stores. It is safe to
assume the implication for all results and object stores, but this precondition can
usually be weakened by constraining their choice. Details of such constraints are
given below. If, however, the method is invoked on an object that equals null,
the precondition can directly be derived from the postcondition, without regard-
ing any method specifications.

pwp(“x = y.m(e); ”,Q) =def (y 6= null ∧P[y/this, e/par] ∧
(∀E, H : ρ(y, e, $, H, E) ∧R[E/res, H/$] ⇒ Q[E/x, H/$]))

∨(y = null ∧Q[$〈NullPExc〉/$,new($, NullPExc)/exc])

The actual parameter expression e is side-effect-free. H and E must be fresh
variables that do not appear in Q nor R. The term ρ(y, e, $,H, E) represents
some general constraints on the objects on which the method can be invoked,
on the arguments, on the current object store, on the possible results and on the
possible object stores after execution. A good ρ makes the precondition weaker.
A simple solution is to take ρ to be true everywhere. More ambitious solutions
constrain object stores of poststates in such a way that they can be obtained by
a finite number of modifications of the object store in the prestate. This would
especially express that all objects that are allocated in the prestate are as well

allocated in the object store of the poststate because object destruction cannot
be performed in Java-KE. In addition to this, a method body can only alter
those objects that can be reached from y or e. For further examples of constraints
see [15].

The pwp-invocation substrategy extends the proof tree of the virtual method
by applying the rules for the invocation statement in forward direction.

To prove the correctness of the precondition generated by pwp-invocation,
we need the invoc-rule which relates the invocation site of a method to its
specification (in this rule, T denotes the static type of the target expression y),
and the invoc-exc rule which deals with method invocations on a null reference:

invoc-rule:

{ P } T:m(par) { Q }

{ y 6= null ∧ P[y/this, e/par] } x = y.m(e); { Q[x/res] }

invoc-exc:

{ y = null ∧ Q[$〈NullPExc〉/$,new($, NullPExc)/exc] } x = y.m(e); { Q }

The proof uses several other rules of our logic which we cannot present within
the scope of this paper. These are the invoc-var rule which states that method
invocations do not modify local variables except the one the return value is
assigned to, the swis-rule which states (among others) that a conjunct U that
does not depend on program variables can simultaneously be added to the pre-
and postcondition of a Hoare triple, and the disjunct-rule. These rules can be
found in [18].

We prove { pwp(“x = y.m(e); ”,Q) } x = y.m(e); { Q } under the assump-
tion that { P } T:m(par) { R } holds. In the proof, we assume ρ(y, e, $,H, E) ≡
true. Q is derived from Q by replacing all program variables except x with fresh
logical variables.

{ P } T:m(par) { R }
invoc-rule

{ y 6= null ∧P[y/this, e/par] } x = y.m(e); { R[x/res] }
swis-rule

y 6= null ∧
P[y/this, e/par] ∧
(∀E, H : R[E/res, H/$]

⇒ Q[E/x, H/$])

 x = y.m(e);

R[x/res] ∧
(∀E, H : R[E/res, H/$]

⇒ Q[E/x, H/$])

(∀E, H : R[E/res, H/$] ⇒ Q[E/x, H/$]) ⇒ (R[x/res, $/$] ⇒ Q[x/x, $/$])

weakening
y 6= null ∧
P[y/this, e/par] ∧
(∀E, H : R[E/res, H/$]

⇒ Q[E/x, H/$])

 x = y.m(e);

R[x/res] ∧
(R[x/res, $/$]

⇒ Q[x/x, $/$])

y 6= null ∧
P[y/this, e/par] ∧
(∀E, H : R[E/res, H/$]

⇒ Q[E/x, H/$])

 x = y.m(e);

R[x/res] ∧
(R[x/res, $/$]

⇒ Q[x/x, $/$])

R[x/res] ∧ (R[x/res, $/$] ⇒ Q[x/x, $/$]) ⇒ Q

weakening{
y 6= null ∧ P[y/this, e/par] ∧
(∀E, H : R[E/res, H/$] ⇒ Q[E/x, H/$])

}
x = y.m(e);

{
Q

}
invoc-var{

y 6= null ∧ P[y/this, e/par] ∧
(∀E, H : R[E/res, H/$] ⇒ Q[E/x, H/$])

}
x = y.m(e); { Q }

{ y = null ∧Q[$〈NullPExc〉/$,new($, NullPExc)/exc] } x = y.m(e); { Q } invoc-exc
disjunct-r.

{ pwp(“x = y.m(e); ”,Q) } x = y.m(e); { Q ∨ Q }
Q ∨ Q ⇒ Q

weakening
{ pwp(“x = y.m(e); ”,Q) } x = y.m(e); { Q }

4 Conclusions

In this paper we presented a verification strategy which implements precondi-
tion generation. It is based on a Hoare logic for a Java subset. The generated
preconditions are shown to be correct w.r.t. the Hoare logic. Using a Hoare logic
and supplementing it with strategies provides more flexibility than a fixed wp-
calculus. Extensions of the described strategy can perform intermediate simplifi-
cation steps based on the logic. Different strategies can be used to verify different
aspects of a program. They can also work on the same proof side-by-side. This
paper presents a substrategy that assumes annotated methods. However, one
can also imagine a strategy that tries to derive method annotations from im-
plementations. Altogether, this paper points out several advantages of strategies
compared to a wp-calculus, and suggests starting points for the development of
more refined strategies.

Acknowledgements. We thank the anonymous reviewers and Peter Müller for
their careful considerations and constructive remarks.

References

1. J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML. In T. Mar-
garia and W. Yi, editors, TACAS01, Tools and Algorithms for the Construction
and Analysis of Systems, volume 2031 of Lecture Notes in Computer Science, pages
299–312. Springer Verlag, 2001.

2. A. Bijlsma, P. A. Matthews, and J. G. Wiltink. A sharp proof rule for procedures
in wp semantics. Acta Informatica, 26:409–419, 1989.

3. E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

4. David Gries. The Science of Programming. Springer-Verlag, New York, 1981.
5. David Guaspari, Carla Marceau, and Wolfgang Polak. Formal verification of Ada

programs. IEEE Transactions on Software Engineering, 16(9):1058–1075, Sept.
1990.

6. M. Huisman. Reasoning About Java Programs in Higher Order Logic Using PVS
and Isabelle. PhD thesis, University of Nijmegen, 2000.

7. K. Leino, G. Nelson, and J. Saxe. ESC/Java user’s manual. Compaq Systems
Research Center, Palo Alto, CA, October 2000. #2000-002. Available from http:

//gatekeeper.dec.com/pub/DEC/SRC/technical-notes/SRC-2000-002.html.
8. K. R. M. Leino, J. B. Saxe, and R. Stata. Checking Java programs via guarded

commands. In B. Jacobs, G. T. Leavens, P. Müller, and A. Poetzsch-Heffter,
editors, Formal Techniques for Java Programs. Technical Report 251, Fernuni-
versität Hagen, 1999. Available from http://www.informatik.fernuni-hagen.

de/pi5/publications.html.
9. D. Luckham et al. Stanford PASCAL Verifier - User Manual. Stanford University,

Departement of Computer Science, Stanford, California, 1979. STAN-CS-79-731;
also: Stanford Verification Group, Rep. No. 11, Edition 1, 2nd Printing March
1980.

10. J. Meyer and A. Poetzsch-Heffter. An architecture for interactive program provers.
In S. Graf and M. Schwartzbach, editors, TACAS00, Tools and Algorithms for the
Construction and Analysis of Systems, volume 276 of Lecture Notes in Computer
Science, pages 63–77, 2000.

11. J. Meyer and A. Poetzsch-Heffter. Strategies for the Verification of Object-oriented
Programs. In G. Schellhorn and W. Reif, editors, FM-Tools 2000: The 4th Work-
shop on Tools for System Design and Verification, Reisensburg, Germany, Ulmer
Informatik Berichte Nr. 2000-07. Universität Ulm, Fakultät für Informatik, 2000.

12. P. Müller. Modular Specification and Verification of Object-Oriented Programs.
PhD thesis, FernUniversität Hagen, 2001.

13. David A. Naumann. Calculating sharp adaptation rules. Information Processing
Letters, 77(2-4):201–208, 2001.

14. David von Oheimb. Analyzing Java in Isabelle/HOL: Formalization, Type Safe-
ty and Hoare Logic. PhD thesis, Technische Universität München, 2001. http:

//www4.in.tum.de/~oheimb/diss/.
15. A. Poetzsch-Heffter. Specification and verification of object-oriented programs.

Habilitation thesis, Technical University of Munich, January 1997.
16. A. Poetzsch-Heffter and P. Müller. Logical foundations for typed object-oriented

languages. In D. Gries and W. De Roever, editors, Programming Concepts and
Methods (PROCOMET), 1998.

17. A. Poetzsch-Heffter and P. Müller. A programming logic for sequential Java. In
D. Swierstra, editor, ESOP ’99, volume 1576 of Lecture Notes in Computer Science.
Springer-Verlag, 1999.

18. A. Poetzsch-Heffter and N. Rauch. A Hoare Logic for a Java Subset and its Proof of
Soundness and Completeness. Internal Report 324/03, Universität Kaiserslautern,
Germany, 2003.

