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Abstract

The paper describes the MAX system, a tool for speci�cation and prototyping of

language processors. The MAX system is based on a �rst{order framework generalizing

attribute grammar like frameworks. It allows to refer to syntax tree nodes and \distant"

attribute occurrences. Attributes may have tree nodes as values, so that global relations

between distant tree nodes can be expressed. This enables more compact and readable

speci�cations for a wide class of complex problems. Within the presented framework,

context conditions can be globally formulated by �rst{order predicate formulae.

The paper explains the fundamental semantical concepts of the system, shows its

application to a small name analysis problem, and describes the main implementation

issues. In particular, we present a powerful attribute evaluation algorithm that can

handle attribute dependencies arising during evaluation time. Finally, we report on the

experiences made by the system and compare it to other speci�cation frameworks for

language{based programming tool generation.

1 Introduction

To provide the user with powerful and exible modularization and programming concepts,

modern programming languages like Ada and C++ have very complex visibility, identi-

�cation, and typing rules including import/export mechanisms, named scopes, renaming,

overloading, and rules to solve ambiguity problems with (multiple) inheritance.

As these rules not only decide which programs satisfy the context conditions, but de-

termine the semantics of a program | e.g. in C++, they inuence the selection of member

functions |, design and standardization e�orts and compiler development based on formal

speci�cations are even more important than for smaller languages. The following C++ frag-

ment illustrates some identi�cation subtleties arising from inheritance and nested classes:

(1) struct A { int memb; };

(2) struct B : A { // B.2 is derived from A.1

(3) struct A { int memb; }; // A.3 is nested in B.2

(4) };

(5) int foo(){

(6) struct C : B, B::A {...}; // C is derived from B.2, A.3

(7) struct B : A, C {...}; // B.7 is derived from A.1, C

(8) B obj; // obj is of type B

(9) obj . B::A::memb ... // which memb is selected?

(10) }

Is the selection in the last line ambiguous? And if not, which member of obj is selected?

Should we take the base class A of B.7? Or should we look for a base class B of B.7 and then

for a base class A of this B? Or should we look for a base class B::A of B.7? As reference

manuals are mostly written in an adhoc fashion without systematic support, they often

1Supported by DFG grant Po 432/2-1.
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leave many questions open; e.g. the C++ reference manual does not give a precise answer

to the above problem. We developed a system to support modular language design that

is based on a high{level speci�cation language and provides implementations for realistic

prototyping purposes.

Many of the conventional software tools supporting the language design and implementation

process (cf. section 5) have the following disadvantages when faced with problems like the

one above:

� All declaration and scope control information has to be collected in table data struc-

tures to pass it around in the syntax tree; as these symbol tables become rather

complex data structures for big languages, symbol table based speci�cations are hard

to read.

� Symbol table techniques tie up identi�cation, typing (the type of a variable has to

be recorded in the symbol table) and later tasks of language processing (e.g. storage

allocation); i.e. they force speci�cations to give up the natural modularity based on

the di�erent aspects of semantic analysis.

� They provide a bad basis to prove language properties, mainly because of the complex

symbol tables and because context conditions are usually mixed up with attribute

de�nitions.

The MAX system, described in this paper, tries to overcome these disadvantages. The MAX

system is based on a formal, �rst{order framework properly generalizing attribute grammar

like frameworks. In addition to other features, the framework

� provides access to the syntax tree and to distant attribute occurrences in attribute

de�nitions;

� allows attributes to have tree nodes as values;

� enables the formulation of context conditions by �rst{order predicate formulae;

� provides a simple and purely functional interface between semantic analysis and later

tasks of language processing; e.g. it provides an excellent basis for recursively de�ned

interpreters.

The notable aspect of the second feature is that it allows to de�ne additional edges in

the syntax tree, which is very useful to represent identi�cation, type, and ow information

(cf. �gure 1).

Paper Overview The paper is organized as follows: In section 2, we explain how a

speci�cation according to our framework looks like. Section 3 sketches the semantics of

speci�cations. Section 4 presents the main implementation concepts and experiences. In

section 5, we relate the presented work to comparable systems and frameworks, in particular

to the Cornell Synthesizer Generator and to higher order attribute grammars. Finally, we

present conclusions and discuss topics for future research.

2 Specifying Semantic Analysis with MAX

This section explains the main parts of a small MAX speci�cation to illustrate the key

concepts of the system. A speci�cation consists of the abstract syntax, attributes, functions,

and context conditions. As an example, we use a tiny C++ subset featuring name analysis

in the presence of inheritance { a simpli�ed version of the name analysis problem illustrated

in section 1 :
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Program ( DeclList )

DeclList * Decl

Decl = ObjectDecl | FunctDecl | ClassDecl

ObjectDecl ( ClassId Ident )

FunctDecl ( ClassId Ident /* NoParams */ DeclList Exp )

ClassDecl ( Ident ClassIdList DeclList )

ClassIdList * ClassId

ClassId ( Ident )

Exp = Object | Selection | ...

Object ( Ident )

Selection ( Exp Ident )

A program of this subset is just a declaration list. Function declarations2 are simpli�ed by

omitting parameters and allowing only an expression as body. A class declaration consists

of a list of base class identi�ers and a list of local members. A selection consists of an

expression and a member identi�er.

The example speci�cation uses four attributes to describe identi�cation: the attribute

env (see below); the attribute decl yielding for each identi�er the corresponding declaration,

i.e. decl expresses the result of the identi�cation; the attribute type yielding for each

expression the corresponding class declaration; the attribute accessible_membs yielding

for each class the accessible members of that class, i.e. all local members and all those

members of the base classes that have a unique name. The syntax tree fragment in the

following �gure shows how decl and type can be understood as additional edges in the

syntax tree. Here is an example of their use: To compute the declaration of the identi�er

"m" in the selection, take the type of the selected expression (the �{attribute of Object)

Ident

"obj"

Object Ident

"m"

Selection

Ident

"C"
decl

type

accessible_memb

.  .  .  .

ObjectDecl

Ident

ObjectDeclObjectDecl

"obj"

ClassId

DeclList

ClassDecl

Ident

"C"

.  .  .  .

Figure 1: sample syntax tree

2In C++ terminology: function de�nitions.
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and lookup the identi�er in the attribute accessible_membs of that type. The following

subsection explains how to specify such remote attribute accesses.

2.1 Attributes

An attribute in MAX is a special kind of function having exactly one node valued argument.

Node sorts are denoted by the sort name as de�ned in the abstract syntax su�xed by @. To

show how attribute de�nitions look like, we shortly discuss the de�nitions for env, decl, and

type. The attribute env yields for each declaration the list of the locally valid declarations.

In the body of an attribute de�nition, we use a pattern notation to refer to the context of a

tree node. E.g. the de�nition of env reads as follows: The (static) environment of the �rst

declaration DCL of a program is the list containing DCL as its only element; the environment

ATT env( Decl@ DCL ) DeclNodeList :

IF Program@< < DCL, * > > : append( DCL, DeclNodeList() )

| FunctDecl@<_,_,< DCL, * >,_> FD : append( DCL, env(FD) )

| ClassDecl@<_,_,< DCL, * > > CD : append( DCL, rest(env(CD)) )

| DeclList@<*, DCL1 ,DCL , *> : append( DCL, env(DCL1) )

ELSE nil()

of the �rst local declaration DCL in a function results from appending DCL to the environment

of the function; likewise for classes; if the declaration DCL has a predecessor DCL1 in its

declaration list, then append the DCL to env(DCL1). Notice that such conditional patterns

must contain at least one bound identi�er (DCL in the above example); all other identi�ers

are bound by the pattern. The de�nition of the attribute decl uses env directly when

looking up class identi�ers, and via the remote attribute access fct_env yielding the

ATT decl( Ident@ IDN ) Decl@ :

IF Decl@< ClassId@<IDN>, * D : lookup( term(IDN), rest(env(D)) )

| ClassDecl@<_,<*,<IDN>,*>,_> CD: lookup( term(IDN), rest(env(CD)) )

| Object@< IDN > OBJ : lookup( term(IDN), fct_env(OBJ) )

| Selection@< E, IDN >: lookup( term(IDN),

accessible_membs(type(E)) )

ELSE nil()

ATT type( Exp@ E ) ClassDecl@ :

IF Object@< IDN > E : decl( fstson(fstson(decl(IDN))) )

| Selection@<_,IDN > E : decl( fstson(fstson(decl(IDN))) )

ELSE nil()

environment of the enclosing function declaration. The interesting part of this attribution

is the identi�cation of member identi�ers in selections: The identi�er is looked up in the

accessible_membs attribute of the class declaration being the type of the selected expression

(cf. �gure 1). I.e. it uses the type attribute to refer to a distant tree node and the attribute

occurrence of accessible_membs at that node.

In C++, type equality is declaration equality and not structural equality. Accord-

ingly, the attribute type yields for each expression node the corresponding class declaration.

E.g. to get the type of an object, take the class identi�er in its declaration (the function

fstson yields the �rst son of a tree node); as this identi�er is as well subject to identi�ca-

tion, take the declaration of it. Two aspects of the speci�cation should be noticed: First,

attributes can be mutually dependent; e.g. decl uses type and vice versa. Second, the

dependencies between attribute occurrences may depend on attribute values; e.g. in type,

the attribute decl is applied to a node that itself is determined using decl.
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Compared to a classical attribute grammar, our framework has the following advantages:

The static environment/symbol table mechanism is just a at list (cf. [KW91]); there is no

need for entering declaration information like the type of a variable or the accessible members

for class declaration. This not only reduces the number of functions and the size of data

structures a reader has to understand in order to understand the speci�cation, but seperates

as well the di�erent tasks of static analysis that are otherwise tied up by the symbol table.

In addition to this, we get a very nice and slim program representation as interface for later

tasks of language processing, as space consuming tables are not needed (even the attribute

env can be dropped). This is similar to what is done in the Ada intermediate language

DIANA [GWEB87].

2.2 Functions

In contrast to semantic functions in classical AG frameworks, functions in MAX can access

the syntax tree and may be mutual recursive with attributes. As small example consider

the de�nition of the function base_membs_rec that recursively joins the accessible members

of all base classes of a class declaration:

FCT base_membs_rec( ClassId@ CID ) DeclNodeList:

IF ClassIdList@< *, <ID>CID >: accessible_membs( decl(ID) )

| ClassIdList@<*,<ID>CID,CID1,*>: join( accessible_membs(decl(ID)),

base_membs_rec(CID1) )

ELSE nil()

Notice that base_membs_rec could have also been speci�ed as an attribute, because it

has exactly one node valued parameter. As we will see, this would not have changed the

semantics, but the implementation.

2.3 Context Conditions

The framework allows to formulate context conditions in a natural, and convenient way

based on predicate logic. Especially during language design time, such high{level executable

speci�cations of context conditions proved to be very useful. A context condition consists

of a quanti�cation part and a formula. The quanti�cation is described using patterns. Here

are two typical context conditions for our C++ subset:

CND Ident@ IDN : ! is_Decl@[ fath(IDN) ] -> decl(IDN) # nil()

CND DeclList@<*,D1,*,D2,*> : declid(D1) # declid(D2)

The �rst condition can be read as follows: For all identi�er occurrences it must be true

that if it is an applied occurrence (i.e. the father node is not a declaration), the declaration

attribute must be de�ned (for the meaning of nil see section 3). The second condition

requires that two declarations in a declaration list must have di�erent identi�ers. Error

messages can be issued by attaching string expressions to the context conditions.

3 Semantics for MAX Speci�cations

This section explains the semantics of the MAX speci�cation language. First, it de�nes the

domain speci�ed by an abstract syntax and a given syntax tree; then it de�nes the semantics

of attributes, functions, and context conditions.
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3.1 Occurrence Structures

This subsection introduces occurrence structures. Occurrence structures are used to model

programs including all prede�ned functions and predicates of our framework. An occurrence

structure consists of a set of order{sorted terms TAS , the set of occurrences of one given term

t 2 TAS, and the functions and predicates that express the relationship between terms and

occurrences. The main advantages of occurrence structures compared to term algebras are

as follows: They provide a global view to syntax trees allowing to formally express relations

between distant parts of the tree, and they make available the �rst{order logical framework.

To make this precise, let AS be an abstract syntax like that given at the beginning of section

2 consisting of

� tuple productions tp1; : : : ; tpp where tpi has the form tsi ( tsi1 : : : ts
i

mi
)

� list productions lp1; : : : ; lpq where lpi has the form lsi � ls
i

� class productions cp1; : : : ; cpr where cpi has the form csi = cs
i

1 j : : : j cs
i

ni
.

The symbols denoting tsi; lsj; csk where i; j; k range over the appropriate range of natural

numbers are called the sorts de�ned by AS . Prede�ned are the sorts Ident, Int, Bool, Char,

String. With each sort s, we associate a set of terms Ts. This is done as usual, except that

the list constructors may have an arbitrary number of arguments. Thus, we get the following

de�nition: Let TIdent; TInt; TBool ; TChar ; TString be the sets associated with the prede�ned

sorts, then the sets associated with ts i; lsj ; csk are de�ned to be the smallest sets ful�lling

the following axioms:

� If tj 2 Tts
i
j
for j 2 [1::mi], then tsi(t1; : : : ; tmi

) 2 Ttsi
.

� If tj 2 Tls
i for j 2 [0::k], where k 2 Nat, then lsi(t1; : : : ; tk) 2 Tlsi

.

� If tj 2 Tcs
i
j
for a j 2 [1::ni], then tj 2 Tcsi

; i.e. the sort de�ned by a class production

is just the union of the sorts on the right{hand side.

The union of all sets associated with the sorts of AS is called the set of (order{sorted) terms

of AS, denoted by TAS . Now, let t 2 TAS ; we de�ne the set of occurrences Occ(t) to be the

multi{set of subterms of t that contains for each occurrence of subterm s in t exactly one

instance; we often call Occ(t) the nodes of t.

As an occurrence structure is a special kind of �rst{order structure, we �rst give the basic

de�nitions for signatures and �rst{order structures: A signature (of a �rst{order structure)

consists of two families of �nite sets of symbols, the predicate symbols (PREDs)s2IN and

the function symbols (FUNCs)s2IN. A �rst{order structure S with signature � is given by

a set U called the universe of S and two families of mappings ('s)s2IN and (�s)s2IN,

's : FUNCs ! F(U s; U) and �s : PREDs ! P(U s) ;

where F(U s; U) denotes the functions from U s to U and P(U s) denotes the power{set of

U s. �{formulae and their interpretation in a �{structure are de�ned as usual. Details can

be found e.g. in [End72].

The occurrence structure OSAS;t given by an abstract syntax AS and a term t 2 TAS is

a �rst{order structure (�,U ,('s)s2IN,(�s)s2IN), where

� � contains3 the function symbols for the prede�ned functions nil(0), root(0), fath(1),

rbroth(1), fstson(1), append(2), first(1), rest(1), term(1) and as those for the construc-

tor functions tsi(mi), i 2 [1::p], and the empty list constructors lsi(0), i 2 [1::q] (the

3The list of symbols is not complete w.r.t. MAX, but su�ces to show the main features.
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arity is denoted by the subscript) as well as the predicate symbols =[2] and iss[1] for

each sort s or s � Node.

� the universe U is the disjoint union of TAS , Occ(t), and the extra element nil; nil is

used to make functions total that are usually de�ned only for a subset of U .

� ('s)s2IN interpretes the functions as follows: nil(0) yields the extra element nil. root(0)
yields the root node of t. fath(1), rbroth(1), fstson(1) yield the father, right brother,

and �rst son node, if the argument is a node and its relative exists, otherwise they yield

nil. append(2), first(1), rest(1) denote the ordinary list functions, made total by nil.

term(1) yields for each node, i.e. for each subterm occurrence of t, the corresponding

subterm; nil otherwise. Constructor functions are interpreted as usual and yield nil,

if the arguments are not correctly sorted. Empty list constructors just yield the

corresponding terms.

� �2 interpretes =[2] as the equality on U and iss[1] as the sort check; e.g. isNode[n ] is

true, i� n is a node.

On top of occurrence structures, we can de�ne further sorts. A typical example is

\ DeclNodeList * Decl@ ", the sort of lists of declaration nodes used in the C++ ex-

ample to represent environments. For an axiomatic de�nition of occurrence structures and

enrichments by further data types see [PH91a].

3.2 Semantics of Attributes and User{De�ned Functions

For the following let OSAS;t be an occurrence structure and AFL be a �nite list of possibly

mutual recursive attribute and function de�nitions. In order to de�ne a �xpoint semantics

for AFL w.r.t. OSAS;t, we extend OSAS;t by adding a bottom element ? to U , thereby

introducing a at domain structure on U . All functions and predicates are extended such

that they are strict w.r.t. ?. Notice that we cannot use nil for that purpose, because

we de�ned the equality to be non{strict w.r.t. nil. The nil element is intended to denote

\observable" failure situations like failing lookups in order to check their outcome later on.

To express correct sorting of parameters and function results (cf. section 2), we embed

each body of an attribute and function in AFL into a conditional expression that �rst checks

whether the arguments are correctly sorted, and if so and the result is correctly sorted,

returns the result; otherwise it returns nil. As patterns in conditional expressions have to

contain at least one bound identi�er, we can translate them into boolean expressions checking

whether the pattern matches the context of the bound node; if the pattern contains free

identi�ers, these identi�ers are bound by let{expressions in the corresponding then{branch.

After these transformation steps, AFL is an ordinary system of recursive function de�ni-

tions over a at domain. Thus, we can de�ne the semantics of AFL to be the least �xpoint

of this system (see e.g. [Man74] chapter 5 for �xpoint theory of recursive functions).

3.3 Context Conditions

From a semantical point of view, the context conditions are just a convenient notation for

�rst{order predicate formulae. E.g. the meaning of the �rst context condition in subsection

2.3 is expressed by the formula

8 IDN : isIdent[term(IDN )] ! (:isDecl[term(fath(IDN ))] ! :( decl(IDN) = nil() ) )

A program P is context correct, if all context conditions are valid in the occurrence structure

of P extended by attributes and functions. To be precise, \valid" means that for each

assignment of non{bottom values to the variables bound in the quanti�cation, the body of

the formula is true; in particular, it must not be bottom.
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4 Implementation Aspects and Experiences

4.1 Implementation

The overall structure of the implementation is as follows: In a �rst step, the system trans-

forms the term representation of the syntax tree coming from the parser into an internal

representation. Then attribute evaluation and context checking is performed. Finally, con-

trol is given back to the user program for further tasks of language processing. For that,

s/he has access to the attributed syntax tree through the functional interface given by the

speci�cation, i.e. the tree walk functions, de�ned functions, and attributes. The �rst part

of this subsection describes the internal program representation and context checking; the

second part attribute evaluation; and the third part optimizations.

Program Representation and Checking In order to achieve e�cient implementations

for context checking and attribute evaluation, we cannot use a straightforward pointer im-

plementation to represent programs, as we need for both tasks a fast access to all nodes

of a given sort. In our implementation, we code each node by a positive integer, imple-

menting the prede�ned treewalk functions (fath,..) by arrays. The coding of the nodes is

performed according to the following rules where maxnode denotes the number of nodes in

the considered syntax tree:

� the coding is a bijection from the set of nodes onto the interval [1,maxnode]

� all nodes of a sort NS de�ned by a tuple or list production are continuously coded,

i.e. their codes form a continuous interval [minNS ; maxNS ]

� all nodes of sort NS de�ned by a class production, should be contained in a continuous

interval, if possible

To avoid technical overhead, we assume for the following that the third rule can be ful�lled

for each class production. Thus, the nodes of each sort are contained in a continuous integer

interval. This coding has very nice properties for the implementation of our framework:

We can implement all attributes by compact arrays using the argument node as index; this

enables trivial attribute allocation, and allows direct access to all attribute occurrences of a

node. In addition to this, pattern matching for context conditions can be implemented very

fast: Let NS be the outermost sort of the pattern; we only need a for{loop running from

minNS to maxNS checking for each node whether the top productions of the corresponding

subtree match the pattern. For each of these matches, the variables in the pattern are bound

to the corresponding nodes, and the body of the context condition is evaluated. If the check

fails, the corresponding error message is issued.

The internal representation of a program is constructed in two passes over the term

representation which may come from a parser, the MAX system itself or some other tools.

The �rst pass counts for each sort de�ned by a tuple or list production how many nodes

of this sort exist in the program. With the results of this pass, it is easy to compute the

bounds of the intervals for the sorts. A counter for each sort of a tupel or list production

is initialized to the lower bound of the corresponding intervall. During the second pass, the

arrays for the prede�ned treewalk functions are computed by incrementing these counters

whenever a subterm of this sort is visited.

Attribute Evaluation In contrast to attribute grammars, our framework allows attribute

dependencies that arise during attribute evaluation, i.e., we can not even determine all

attribute dependencies knowing the syntax tree. For example in the forth case of attribute
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decl (see section 2.1), we access an attribute occurrence of accessible_membs at a node that

is determined by the attribute value of type. We call such attribute dependencies dynamic.

This subsection presents a straightforward implementation technique for attribute evaluation

with dynamic dependencies; optimizations are discussed in the following paragraph.

The �rst step of attribute evaluation allocates for each attribute attr an array

attr_array to store the attribute values. If NS is the parameter sort of the attribute,

the index range of the corresponding array is [minNS ; maxNS ]. Initialize these arrays to a

special value undef. The attribute values are computed by recursive function procedures.

To show how these procedures look like, let attr be an attribute with parameter sort

parSort, result sort resSort, parameter name n, and body expression BODY. Then, we get

the following procedure for attr (given in pseudo ANSI{C); to break up circular attribute

dependencies, we use the special value seen:

resSort attr ( parSort n ){

if( attr_array[ n ] == undef ){

attr_array[ n ] = seen ;

attr_array[ n ] = BODY ;

} else if( attr_array[ n ] == seen ){

exit( circular attribute dependencies );

}

return attr_array[ n ] ;

}

Using this procedure at each call site in the translated speci�cation, an attribute is only

computed, if it is needed. As we made the observation that usually all attribute values are

needed, we do not make use of this property, but compute all attribute values by simple for{

loops over the index ranges of the attribute arrays. This guarantees that possible circular

attribute dependencies are detected, and allows us to implement attribute calls in program

parts using the attributed trees by simple array accesses.

The presented algorithm is essentially an adaption of the one proposed in [Jou84a]. No-

tice that it is di�erent from that of Jourdan [Jou84b] and Katayama [Kat84]. The recursion

here is not controled by the tree structure, but directly by the attribute dependencies.

Optimization If we compare the time needed to manage the control ow per evaluated

attribute value, two reasons cause the MAX attribute evaluator to perform slower than a

statically generated treewalk evaluator. The �rst reason is that a function call is needed for

each attribute evaluation. The other reason stems from the evaluation of the conditional

expressions in the body of an attribute de�nition. Whereas the treewalk evaluator \knows"

his context in the tree, the �rst task in evaluating an attribute occurrence in MAX is to

determine its context. This is usually done by conditional expressions (cf. the examples in

section 2). By a careful implementation of conditional pattern matching, the resulting over-

head can be drastically reduced. We obtained a reduction by the factor of four for complex

attributions, if compared to a simple translation into if{then{elseif..{else statements. In our

test suite, we needed in the average 1.8 switches or branches for the computation of one

attribute value.

In order to discuss storage optimization, we have to review one of the basic design prin-

ciples underlying MAX. In contrast to systems like GAG [KHZ82] or LINGUIST{86 [Far82],

we were interested in a system that provides an attributed syntax tree for use in succeeding

tasks of language processing, in particular for use by other tools. Therefore, we could not

pro�t of techniques like those discussed in [FY91], but designed the framework in such a

way that the number and complexity of attributes could be reduced. Only for attributes
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that are declared \temporary", we deallocate the corresponding attribute arrays when all

depending permanent attributes are computed. The dependencies between the attributes

(not between the attribute occurrences) can be simply determined by analysing the recursive

dependencies of the attribute de�nition; i.e. the storage optimization is performed on entire

attributes and not on attribute occurrences.

Of course, we have to pay a certain price for the simple, but very powerful attribute

evaluation technique: In the worst case, e.g. if we start attribute evaluation with an at-

tribute occurrence that depends on every other attribute occurrence, we need stack space

proportional to the depth of the attribute (occurrence) dependency graph. The interesting

point here is that an evaluation strategy approximating the dependency graph su�ces to

avoid this problem. The di�erence between strategy and real dependencies is automatically

handled by the stack mechanism. We say that an evaluation strategy approximates the

dependency graph for a tree T by a measure M(T ), i� the following holds whenever the

strategy tries to evaluate an attribute occurrence attr: The number of unevaluated prede-

cessors of attr in the attribute (occurrence) dependency graph is bound by M(T ). A typical

example for such a measure is the depth of the tree times the maximum number of attributes

of one node. In general, it can be hard to �nd and prove measures for given strategies, just

as it is di�cult to measure the needed stack space for recursive programs. In practice, we

obtained very good results using the following technique.

In a �rst step, the attributes (not the attribute occurrences) are grouped in a sequence

of partitions so that an attribute only depends on attributes in its own partition P or in

partitions being before P in the sequence. These partitions are evaluated in turn, so that

only the attributes of one partition have to be considered for the stack problem. Even in

realistic applications, these partitions contain no more than 5{10 attributes. As evaluation

strategy, we use a left to right tree traversal. This heuristic strategy reects the textual

order in program texts. Further improvements are sketched in the last section.

4.2 Experiences

Until now, MAX was used for two realistic size tasks and for a number of small up to mid{

size application. The �rst realistic task was the bootstrap of the system itself: Currently,

74% of MAX is generated from a MAX speci�cation; the rest consists of a yacc parser and a

C{code generator. We like to shortly report on two experiences made during bootstrapping.

The �rst is the importance of the high{level context condition facility for language design.

Whereas context conditions are often treated as a disliked appendix to language design,

in our framework they are an integral part designed together with abstract syntax and

attribution; this leads to clearer languages and better formal speci�cations that can be nicely

mixed up with informal descriptions for language documentation. Secondly, we learned

about the practical importance of the simple functional interface between the system and

C. As attributes and functions are translated into C{function procedures, it is very simple to

switch from hand{written to generated code, or what is more important, to stepwise re�ne

generated code by hand{written code to improve space and runtime aspects.

The second application | an analyser for a PASCAL subset | was chosen to compare

MAX with conventional AG systems. We compared it to the CMUG system, a slim successor

of MUG2 [GGMW82]. Some remarks are necessary to interprete the �gures of the following

table. The �rst column gives the speci�cation length in lines. Even though we did not

count the copy rules, the CMUG speci�cation is considerable longer, because it has to

contain descriptions of additional data structures like the symbol table and all the semantic

functions working on it, because the code for context conditions and error handling in

CMUG is more than three times as long as in MAX, and because the attribution is more

complicated.
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# lines # attributes # attr. occurrences analysis time

MAX 610 9 14825 1.72s

CMUG 1470 17 72713 0.65s

To compare the number of attributes, we counted in CMUG only di�erent \semantical

concepts", usually expressed by the same attribute name: E.g. the block nesting level is one

attribute, even though it is attached to di�erent nonterminals; but, attributes that occur

as inherited and synthesized to one nonterminal are counted twice. The last two colums

give the number of attribute occurrences and the analysis time for a typical4 thousand line

program containing all features of the PASCAL subset. With attribute optimizations like

those discussed in [FY91] which are not performed in CMUG, it could be expected that the

number of non{optimized attribute occurrences (i.e. occurrences allocated with nodes) is

almost the same as in MAX. The interesting point here is that the advantages of the more

exible speci�cation concepts of MAX are reected by the optimization gain in classical

AG systems. The showed time for program analysis contains scanning and parsing and is

measured on a HP9700.

The system is as well very useful for other applications connected to programming lan-

guage speci�cation. E.g. it is rather simple to implement class browsers for object{oriented

languages on the basis of MAX speci�cations. Another interesting application was the spec-

i�cation of the operational semantics for a small functional language: As the MAX system

allows to seperate identi�cation from interpretation, the runtime environments for func-

tional languages with static binding are mappings from tree nodes (not from identi�ers) to

values/closures.

5 Comparison with Related Work

The MAX framework aims to close the gap in static semantics between frameworks that

are primarily theory oriented (e.g. [Mos92]) and compiler generators competing with pro-

duction quality compilers. In particular, it is related to recent works aiming at raising the

speci�cation level of attribute grammars, e.g. [KELP88], [KW91],[KW92]. Whereas those

works essentially build new abstraction levels and modularity on top of attribute grammars,

we generalized the basic framework. In the following, we compare MAX to three other

approaches to static semantics speci�cation based on attribute grammars. The comparison

focusses on the speci�cation framework.

Cornell Synthesizer Generator The CSG [RT89] generates language{based editors. It

has its own applicative speci�cation language SSL based on attribute grammars. The AG

framework mainly was choosen because of the incremental evaluation properties. In order

to ease speci�cation and to save storage, SSL allows upward remote attribute access and

references to attribute occurrences. Upward remote attribute access is just a special case of

MAX's ability to inspect distant attribute occurrences. References to attribute occurrences

in SSL can only be used in a very restricted way and do not have a clear semantics. In MAX,

such references are obsolete, as distant attribute occurrences can be refered to through their

node.

Higher{Order Attribute Grammars Like the MAX framework, higher{order attribute

grammars [VSK89] are a proper generalization of classical attribute grammars. They allow

4In fact, we tested a suite of programs. But, as all programs showed almost the same behaviour, we

decided to give only the �gures for one program. Notice that this is in contrast to mesuring code quality of

compiled programs.
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to compute parts of the syntax tree during attribute evaluation and to use parts of the

syntax tree as attribute values. Whereas the latter can be done in MAX too (by using the

function term), the former cannot be done, if the computation of the \open" syntax tree

parts is recursive as in macro expansion. If it is nonrecursive, such a behaviour can be

simulated by de�ning several attribution phases like in attribute coupled grammars [GG84],

i.e. using a term computed during attribution phase i as input for attribution phase i + 1
5. On the other hand, the central advantages of the MAX framework have to be treated in

the HOAG similar to classical AG's; in particular, references to distant tree nodes can't be

expressed.

Door Attribute Grammars In [Hed91], the amalgamation of attribute grammars with

object{oriented techniques is described. In that approach, the attribute evaluation enriches

the syntax tree by an object structure representing semantical information. This works is

similar to the presented one in that the use of non-local attribute references is encouraged

and supported. But the focus of the two works is di�erent: Hedin's work focusses on the

generation of incremental evaluators; as objects may be created during evaluation time, a

special mechanism (the so{called \doors") is introduced to retain a kind of declarativity.

The focus of our work was to provide a powerful system based on a simple, formal semantics

that can be used to reason about program properties.

6 Conclusions and Future Research

6.1 Conclusions

We presented the MAX System, a tool for semantic analysis and similar tasks (like e.g. data

ow analysis) that provides modular attribute speci�cations and declarative formulations of

context conditions. As node valued attributes can be understood as additional edges in the

syntax tree, the framework enables the speci�cation of analysed programs as syntax graphs.

Thus, table data structures at the interface between front{ and back{ends can be avoided.

We described rather e�cient implementation techniques for all parts of the system. The

implementation provides an e�cient functional access to analysed programs from C so that

general language speci�cations could be used as basis for other language{based tools or as

starting point for re�ning speci�ed language front{ends.

6.2 Future Work

Analysis Techniques The powerful framework allows and encourages to violate the pro-

duction locality property of attribute grammars. This makes the circularity test | in

general | undecidable, renders optimization more di�cult, and needs new techniques for

incremental evaluation. We investigate analysis techniques from abstract interpretation to

regain as much information as possible (cf. [Ros92]). A typical information of that kind

would be e.g. \all occurrences of an attribute only use attribute occurrences left or upward

in the syntax tree". With such or similar information, one can prove non{circularity, im-

prove evaluation strategy, and characterize subclasses of the presented framework that allow

for e�cient incremental evaluation.

Extensions The presented speci�cation language should be understood as a kernel for

further very useful extensions. The most interesting extensions for us are the following:

5The MAX system can attribute any term no matter whether it comes from the parser or from another

phase.
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� The high{level visibility rule method described in [PH91b] and [PH92].

� Fixpoint de�nitions of attributes in the sense of Farrow ([Far86]) to specify data ow

analysis; this is very promising, because we can use attributes to overlay the syntax

tree with appropriate data ow graphs.

� Uni�cation techniques to de�ne attributes (cf. [Sne91]); this can be very useful to

implement polymorphic type resolution and similar tasks; in contrast to usual speci�-

cations working with type assumption environments, our framework allows to specify

the type relation between de�ned and used identi�er occurrences directly by the link

constructed during identi�cation.

Parallelism Another interesting question for further research would be whether the

greater modularity gained by the new attribution model could be exploited in parallel imple-

mentations. As the proposed framework considers a front{end as a step by step enrichment

of the syntax tree, we would get a pipeline execution model having pipeline stages for each

attribute partition.
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