
Proceedings of the 3rd International Symposium on

Programming Language Implementation and Logic

Programming

1991, Springer-Verlag. LNCS 528

Logic{Based Speci�cation of Visibility Rules

Arnd Poetzsch{He�ter
Institut f�ur Informatik der TU M�unchen

Arcisstrasse 21, D{8000 M�unchen 2
poetzsch@lan.informatik.tu-muenchen.de

Abstract

The paper describes a new, declarative method for the formal speci�cation of

visibility rules. In contrast to common methods that are based on the speci�cation

of a symboltable (or environment), of appropriate update operations and of passing

rules, the presented method is related to visibility descriptions in language reports.

It consists of three steps: First, the program entities are speci�ed, i.e. the candidates

for the meaning of an identi�er; the next step de�nes the ranges where the program

entities are valid or hidden; �nally, visibility is expressed in terms of these ranges.

To formally de�ne the semantics of these visibility speci�cations, a modeltheoretic

view of abstract syntaxtrees is sketched. Using this framework, we give a �xpoint

semantics for such speci�cations.

1 Introduction

Formal speci�cations play an increasingly important role in the design and de�nition of

programming languages (PL's). This has two main reasons: The PL's become more and

more complex, and the requirements concerning portability and standardization increase.

A programming language de�nition usually consists of four more or less seperated parts:

� the lexical syntax (regular expressions)

� the context{free syntax (context{free grammars)

� the context{dependent syntax (attribute grammars or functional speci�cations)

� the semantics (e.g. denotational semantics)

By context{dependent syntax, we mean the visibility and type rules and similar contextual

constraints (cf.[Wat84]). This paper concentrates on speci�cations of visibility rules. It

proposes a new speci�cation technique that allows considerable shorter and better to read

formal speci�cations than e.g. attribute grammars.

1.1 State of the Art

There are two problems with speci�cation techniques for context{dependent syntax:

� How can we get e�cient implementations from speci�cations?

� How can we decrease the size of these often voluminous speci�cations?

63



A lot of work has been done to solve the �rst problem, especially in the �eld of compiler

generation ([Jon80]). Most of the developed methodes make use of the same concept:

They gather declaration information by constructing an appropriate data structure (sym-

boltable, environment,..) and pass this data structure to the applications of program

entities in the syntaxtree. Thus, the visibility de�nition consists of three parts: The

speci�cation of the often very complex data structure, the speci�cation of the update

operations, and the passing rules (cf. [Ua82]). Unfortenately, such speci�cations are hard

to read, are a bad basis to prove language properties, and give a rare support for error

handling and treatment of program fragments. Recent approaches tried to meet these

requirements by using predicate logic or specially designed speci�cation languages. Let

us brie
y sketch the so far proposed methods:

� S. Reiss (see [Rei83]) presented a speci�cation language for the de�nition of very

elaborate symboltable modules. These modules are developed for visibility rules like

those in Ada. The symboltable modules provide functions that have to be used to

de�ne the visibility rules in an attribute grammar like framework.

� The work of G. Snelting (see [SH86]) concentrates on type rules and similar con-

straints and their checking in incremental structure editors. The visibility rules are

de�ned in a specially designed speci�cation language based on a �xed scope and

visibility concept like that in PASCAL.

� J. Uhl (see [Uhl86]) and M. Odersky (see [Ode89]) provide a general framework

for the speci�cation of context{dependent syntax. As in this paper, they regard

a syntax tree of the programming language being speci�ed as a �rst{order logical

structure and de�ne the contextual constraints via �rst{order formulae. In contrast

to our approach, they do not provide special means to de�ne visibility rules. This is

less comfortable, leads to less structured speci�cations, and does not allow special

implementation techniques for the identi�cation process, that are indispensable to

generate su�ciently e�cient context analysers for realistic validation purposes.

1.2 A New Approach to Visibility Speci�cation

This paper presents a new method for the speci�cation of visibility rules. The method is

part of a general framework for the speci�cation of context{dependent syntax. It provides

a formal logical basis and is related to visibility descriptions in language reports. Visibility

speci�ctions have to answer the following question:

What identi�ers are visible at a program point and what is their meaning there?

A speci�cation according to the proposed method, answers this question in three steps:

i) The �rst step speci�es what the meaning of an identi�er can be; this is what we call

a program entity, i.e. a variable, procedure, function, type, label, selector, etc..

ii) The second step speci�es the program constructs in
uencing the visibility, speci�es

the ranges of this in
uence, and speci�es, how these constructs in
uence the visibil-

ity: A construct can make valid identi�er{entity{bindings and/or it can hide such

bindings in the speci�ed range.

iii) Finally, visibility is de�ned in terms of the ranges for validity and hiding.

64



The main advantage of the method compared to attribute grammar or functional speci�-

cations is that symboltable mechanisms | the crucial aspect of those techniques | can

be avoided. The method is more 
exible than the �xed visibility models of Reiss [Rei83]

and Snelting [SH86]. On the other hand, it is su�ciently restricted to get much better

implementations than [Ode89].

1.3 Paper Overview

The paper is organized as follows: Section 2 presents the speci�cation method in more

detail, describes the underlying model, and explains the visibility clauses, i.e. the con-

struct used for the visibility speci�cation. Section 3 provides the formal semantics for

the visibility clauses by mapping them into �rst{order predicate de�nitions. As these

de�nitions are recursive, a �xpoint{semantics is given. Section 4 contains a sketch of the

whole framework for syntax speci�cation.

2 Speci�cation Method

This section presents the 3-step speci�cation method sketched in the introduction. The

aim of such speci�cations is to de�ne a predicate is visible for given abstract syntax trees

(AST). The predicate takes two arguments: A so{called binding consisting of an identi�er

string ID and a program entity PE (see above), and as second argument a program point

PP . It yields true i� the program entity PE is visible under ID at PP . To illustrate

this, let us consider the following PASCAL{fragment:

(1) procedure P;

(2) type T1 = record ... end;

(3) T2 = T1;

(4) procedure P;

(5) type T1 = T2;

(6) begin ... end;

(7) begin ... end;

We are interested in the e�ects of the type declarations: Line (2) introduces a record type

under the identi�er T1. In line (3), this type additionally gets the name T2. What is

the e�ect of the pathological1 type renaming in line (5) ? It hides the binding between

T1 and the record type of line (2) from the beginning of line (5) up to the end of line

(6). And it makes just the same binding valid from the end of line (5) to the end of line

(6) (cf. [ANS83]). Before we show how these informal statements can be described more

precisely, we have to say some words about the representation of programs.

As we need the program structure for the visibility speci�cation, we use abstract syntax

trees to represent programs. To model the relation between the tree nodes, we provide

functions like father, �rstson, etc. and selection by names of nonterminals or terminals.

1We use a somewhat pathological program to demonstrate some problems with visibility speci�cations

by a tiny example.

65



Let us for instance consider the AST of the above PASCAL{program (�gure 1). If R

denotes the root of the tree, R.DfId.string denotes the name of the outermost procedure,

i.e. "P". The dotted notation is used throughout this paper as a convenient equivalent

to unary function application. So an equivalent notation for R.DfId.string would be

string(DfId(R)). To express the grammatical properties, we consider the nonterminals

as types and provide type predicates of the form <nonterminal name> [ ] (cf. section 3).

�gure 1

ProcDcl :: DfId Dcls Block

Dcls :* Dcl

Dcl == ProcDcl | TypeDcl | TypeRenm

TypeDcl :: DfId TypeSpec

TypeSpec :: ....

TypeRenm :: DfId UsId

Block :: ....

DfId :- string

UsId :- string

�gure 2

2.1 Speci�cation of Program Entities

To keep our example speci�cation small, we consider PASCAL{programs consisting only

of parameterless procedure and type declarations as in the example above. The corre-

sponding grammar is given in �gure 2. In this PASCAL{subset, we have two kinds of

program entities, namely procedures and types. Given an AST, we can represent the pro-

gram entities by tree nodes. For procedures, we use the corresponding ProcDecl{nodes,

66



for types the TypeSpec{nodes; i.e. a program entity is a procedure declaration node or

type speci�cation node. The entities of the example are surrounded by a box in �gure1.

In our framework, we express this by the class production

ProgEntity == ProcDcl | TypeSpec .

2.2 Speci�cation of Visibility Ranges

Certain constructs in a programming language in
uence the visibility. These are typically

the declarations making the declared entities valid and hiding others. But there are other

such constructs as well: e.g. the with{ and use{clauses in Ada, renaming constructs,

selections, etc. The in
uence usually ranges over a certain part of the program called a

"range". To model ranges, we introduce program points. For each node N of an AST,

there are two program points, which we denote by "before(N)" and "after(N)". The

program points are linearly ordered as shown in �gure 1 by the numbering. A range is

speci�ed by its starting and end point.

As the method should be strong enough to de�ne overloading and renaming, the

following situations can occur at a given program point: Several entities are visible under

the same identi�er; an entity is visible under several identi�ers; an entity is not visible.

That's why we describe the visibility by bindings between identi�ers and program entities.

Thereby, the basic idea of the speci�cation method can be put as follows: De�ne the

ranges where bindings are valid (called v-ranges) and where they are hidden (called h-

ranges); then combine these ranges to get the points where an binding is visible (s. next

section). The distinction between v-ranges and h-ranges is necessary, because in most

languages they are di�erent and independent, i.e. it is usually not possible to derive

h-ranges from corresponding v-ranges. Let us e.g. consider the visibility in PASCAL. A

declared program entity is valid (under its identi�er) from the end of its declaration to the

end of the directly enclosing block (except for procedures and pointer types), but hides

bindings with the same identi�er in the entire block (cf. [ANS83]). This has the following

consequence for our program fragment: If there was a type visible under the name T2

outside the outermost procedure, it would not be allowed to reference this type in the

type speci�cation of line (2), because it is hidden there by the type renaming in line (3).

To specify visibility, we use a special language construct, called "visibility clause". A

visibility clause consists of three parts: The �rst part speci�es the program construct in-


uencing the visibility (starting with keyword vis); the second part describes the bindings

that become valid or are hidden (starting with keywords valid or hidden); and the third

part speci�es the range (indicated by the keywords from and to). E.g. the �rst visibility

clause in �gure 3 can be read as follows: A procedure declaration makes valid the binding

between the procedure identi�er and the procedure itself in the speci�ed range; this range

starts after the DfId{node and ends after the procedure node, if the procedure node is the

root of the AST, otherwise it ends after the block of the enclosing procedure. The visibil-

ity clause for type renamings makes valid the binding between the lefthandside identi�er

and the type that is visible under the identi�er on the righthandside of the equation in

the speci�ed range. As the hiding rules are the same for all declarations, we can speci�y

them by one visibility clause as shown by the last one of �gure 3: A declaration (except

the outermost procedure) hides all bindings with the same identi�er as the declared iden-

67



ti�er in the range extending from before the corresponding declaration list to after the

corresponding block.

vis ProcDcl PD {

valid Binding( PD.DfId.string, PD )

from after( PD.DfId )

to if is_root[PD] then after(PD)

else after(PD.father.father.Block) fi }

vis TypeDcl TD {

valid Binding( TD.DfId.string, TD.TypeSpec )

from after( TD ) to after(TD.father.father.Block) }

vis TypeRenm TR {

valid Binding( TR.DfId.string, TS ){

TypeSpec[TS]

^ is_visible[ Binding(TR.UsId.string,TS), before(TR.UsId) ] }

from after( TR ) to after(TR.father.father.Block) }

vis Dcl D : : is_root[D] {

hidden Binding( D.DfId.string, PE )

from before(D.father) to after(D.father.father.Block) }

figure 3

That is all we need to speci�y visibility. Especially, we do not need any symboltable data

structure with update routines. The semantics for visibility clauses is given in section

3. Up to now, it should be noticed that the predicate is visible is used in the visibility

clauses, although it will be de�ned by them; i.e. we have a recursive de�nition.

2.3 Speci�cation of Visibility

Finally, we de�ne visibility in terms of the speci�ed ranges: A binding BD is said to be

visible at a program point PP, if

� there is a range hSP;EP i containing PP, where BD is valid, and

� there is no range containing PP that is part of hSP;EP i, where BD is hidden.

This is a more precise formulation of language report statements like "an entity is visible

at a given place, if it is valid and not hidden". It covers as well cases in which a binding

is made visible in a range where it is hidden. This is illustrated by our example: The

type renaming in line (5) hides all bindings with identi�er T1 that are de�ned outside the

procedure P in line (4), but not the binding that is made valid by the declaration itself.

Even though the presented speci�cation method is rather simple, it is very powerful: It

can capture the di�erent scope rules of block structured languages as well as named scopes

and mutual recursive declarations. For example, if we want to allow mutual recursive

68



de�nitions of functions in a declaration sequence or in a letrec{expression of a functional

language, we only have to make valid the bindings for the functions from before the

declaration sequence or the letrec{expression respectively. The main advantage of the

method is that it leads to smaller and more natural speci�cations. In an experience with

a PASCAL{subset, the speci�cation with our method was about �ve times smaller than

the corresponding attribute grammar, mainly because we need not specify symboltable

data structure, update routines, and passing rules, and because we can handle many

productions by one visibility clause as shown by the hiding clause in �gure 3.

3 Semantics

The given tiny example speci�cation consists of three parts: the abstract syntax, the class

production for ProgEntity, and the visibility clauses. The following subsections de�ne

the semantics of these parts.

3.1 Syntax Trees as First{Order Structures

A signature of a �rst{order structure consists of two families of �nite sets of symbols, the

predicate symbols (PREDs)s2IN and the fuction symbols (FUNCs)s2IN. A �rst{order

structure S with signature � is given by a set U called the universe of S and two families

of mappings ('s)s2IN and (�s)s2IN,

's : FUNCs ! F(U s; U) and �s : PREDs ! P(U s) ;

where F(U s; U) denotes the functions from U s to U and P(U s) denotes the power{set of

U s. For more details about �rst{order structures see [End72], p. 79.

The semantics of a grammar as shown in �gure 2 is given by a class of �rst{order struc-

tures. The signature of these structures consists of

� a �xed part containing the function symbols father( ), �rstson( ), rightbrother( ),

root(), after( ), before( ), and the predicate symbols is root[ ], Node[ ], Point[ ], [ � ];

� a grammar{dependent part with the predicate symbols for the nonterminals, like

ProcDcl[ ], Dcl[ ] in our example, and the function symbols to denote son{selection

via nonterminal or terminal name, like DfId( ), TypeSpec( ), string( ).

The class of �rst{order structures for a grammar can be regarded as a representation of

the set of abstract syntax trees. Each abstract syntax tree is modelled by one structure.

The universe of such a structure is the union of the tree nodes, the terminal values, and

the program points, where we have two program points for each tree node, as indicated

in �gure 1. Additionally, the universe contains an extra element called undef to handle

partial functions. The interpretation of predicate and function symbols is de�ned as

follows:

� father( ), �rstson( ), rightbrother( ), root() are interpreted according to the structure

of the syntax tree; in cases where their evident meaning is not de�ned, they yield

undef;

69



� if the argument is a node, after( ) and before( ) yield the program points after and

before the node; otherwise they yield undef;

� whether an element of the universe is the root, a node, or a program point is

expressed by the predicates is root[ ], Node[ ], Point[ ]; the order on the program

points is modelled by the predicate [ � ];

� whether a node is marked by a certain nonterminal, is expressed by the correspond-

ing predicate; e.g. the predicate ProcDcl[ ] is exactly true for all ProcDcl{nodes,

and the predicate Dcl[ ] is true, i� a node is a ProcDcl{node, a TypeDcl{node, or a

TypeRenm{node;

� the interpretation of the selection functions, like DfId( ), TypeSpec( ), string( ),

is as follows: They are only de�ned for nodes that have exactly one son of the

corresponding terminal or nonterminal type; if they are de�ned, they yield this son,

otherwise undef.

Thus, the abstract syntax trees with program points are represented by a class of �rst

order structures with the same signature. We call these structures program models. The

class production for ProgEntity enriches each program model by the predicate ProgEn-

tity[ ] de�ned by

8N : ProgEntity[N ]$ ProcDcl[N ] _ TypeSpec[N ]

Finally, a binding is a pair that has a string as �rst and a program entity as second

component. For bindings, we provide the constructor Binding( , ) and the predicate

is binding[ ] that test whether an element is a binding. For details, how such classes of

enriched program models can be formally de�ned and implemented see [PH91].

3.2 Semantics for Visibility Clauses

As already mentioned, the visibility clauses enrich each program model by the visibil-

ity predicate is visible[ , ]. Their semantics will be given by transforming them into a

recursive de�nition for this predicate. This is done in four steps:

1. De�ne an auxiliary predicate is valid that corresponds to the visibility clauses with

the keyword valid, the so{called v{clauses.

2. De�ne an auxiliary predicate is hidden that corresponds to the visibility clauses

with the keyword hidden, the so{called h{clauses.

3. Express the predicate is visible in terms of is valid and is hidden.

4. Expand the de�nition of is visible by the auxiliary de�nitions.

We demonstrate this transformation by our example. For the three v{clauses, we get the

following de�nition:

70



is valid[BD; SP; EP ] ,def

is binding[BD] ^ Point[SP ] ^ Point[EP ]

^ ( (9PD : ProcDcl[PD]

^ BD = Binding(PD:DfId:string; PD)

^ SP = after(PD:DfId)

^ EP = if is root[PD] then after(PD)

else after(PD:father:father:Block) �

)

_ (9TD : TypeDcl[TD]

^ BD = Binding(TD:DfId:string; TD:TypeSpec)

^ SP = after(TD) ^ EP = after(TD:father:father:Block)

)

_ (9TR : TypeRenm[TR]

^ (9TS : BD = Binding(TR:DfId:string; TS)

^ TypeSpec[TS]

^ is visible[Binding(TR:DfId:string; TS); before(TR:UsId) ] )

^ SP = after(TR) ^ EP = after(TR:father:father:Block)

)

)

In just the same way, we get the de�nition for the auxiliary predicate is hidden :

is hidden[BD; SP; EP ] ,def

is binding[BD] ^ Point[SP ] ^ Point[EP ]

^ 9D : Dcl[D] ^ : is root[D]

^ (9PE : BD = Binding(D:DfId:string; PE) )

^ SP = before(D:father)

^ EP = after(D:father:father:Block)

Then, the predicate is visible is de�ned in terms of is valid and is hidden following exactly

the informal description in section 2.3:

is visible[BD; PP ] ,def

is binding[BD] ^ Point[PP ]

^ (9 SP; EP : Point[SP ] ^ Point[EP ]

^ SP � PP ^ PP � EP

^ is valid[BD; SP; EP ]

^ (6 9 SPH; EPH : Point[SPH] ^ Point[EPH]

^ ( (SP < SPH ^ EPH � EP ) _ (SPH � PP ^ PP < EPH) )

^ is hidden[BD; SPH; EPH ]

)

)

71



Finally, we expand the occurrences of is valid and is hidden in the above equivalence.

The result is a recursive de�nition of is visible.

We will give a �xpoint{semantics for such de�nitions. We call a predicate occurrence

in a formula positive (negative), if there is an even (odd) number of negations on the path

from the predicate occurrence to the root in the abstract syntax tree of the formula. If

we claim that all occurrences of is visible in the v{clauses are positive and those in the

h{clauses are negative, then all occurrences of is visible in the de�ning equivalence are

positive. This restriction is ful�lled by nearly all visibility rules of existing programming

languages; a detailled discussion of this aspect and a semantics for visibility clauses vio-

lating this restriction can be found in [PH91]. With this restriction, we get the following

�xpoint{de�nition.

Let PROG be a program model with universe U and let us denote the righthandside of

the de�ning equivalence for is visible by �[BD;PP ] (the visibility clauses must guarantee

that �[BD;PP ] has no free variables except BD and PP ). Considering 2{ary predicates

as subsets of U2, we de�ne a mapping

� : P( U2 )! P( U2 )

as follows: Let Q � U2 and PROGQ be the enrichment of PROG by the predicate

is visible such that the interpretation of is visible is given by Q. Then:

� (Q) =def f (v;w) 2 U2
j �[v;w] is valid in PROGQg :

It is not hard to show that the positivity of �[BD;PP ] with respect to is visible implies

the monotonicity of � . As (P(U2);�) is a complete lattice, the Knaster{Tarski theorem

[Tar55] ensures that � has a least �xpoint. As this holds for every program model, we

can de�ne the semantics of is visible by the least �xpoint of the corresponding � . (For a

more formal treatment of �xpoint de�nitions in �rst{order logic and further references to

related problems see e.g. [GS86].)

4 Application

As already pointed out, the visibility clauses are only part of a comprehensive method for

syntax speci�cation. In this section, we sketch the rest of this method and shortly discuss

implementation aspects of visibility clauses.

Comprehensive Speci�cation Framework A speci�cation consists of �ve parts:

� the speci�cation of the abstract syntax de�ning the program models;

� the speci�cation of the concrete syntax de�ning the relation between program texts

and program models;

� the visibility speci�cation de�ning the meaning of used identi�er occurrences;

� the type rules;

� further contextual constraints.

72



A visibility speci�cation itself consists of three parts. The speci�cation of the program

entities as shown in section 2.1, the visibility clauses, and the speci�cation of a visibil-

ity function meaning taking a UsId{node as argument and yielding the corresponding

program entity; for languages without overloading, we would have speci�cations like

function meaning ( UID: UsId ) ProgEntity:

that ProgEntity PE: is_visible[ Binding(UID.string, PE), before(UID) ]

Implementation Aspects In the discussion of Odersky's approach in section 1.1, we

critized speci�cation methods that do not even have implementations for realistic vali-

dation purposes. What is the advantage of the presented approach in this respect? The

visibility clauses are a specialized speci�cation construct for the de�nition of visibility

rules. They are su�ciently powerful to precisely describe the visibility of common pro-

gramming languages in a very natural way. On the other hand, the restrictions compared

with arbitrary speci�cation in �rst{order logic (as in [Uhl86] and [Ode89]) permit special-

ized and therefore more e�cient implementations.

The visibility clauses give strong hints how to implement the corresponding part of a

context checker:

� generate a matching mechanism that �nds the constructs in
uencing the visibility

according to the part after the keyword vis;

� provide a general and global datatype that manage the visibility information: For

each identi�er{entity{binding, we have to know, where it is valid and where it is

hidden;

� a global function is then able to extract all program entities that are visible at a

given program point.

Even if such generated symboltable mechanisms will probably be less e�cient than hand-

coded ones, they are certainly much better than general implementations of pure �rst{

order logic. And there is another advantage of the proposed approach. After the identi-

�cation process is correctly �nished, we have a simple and formal representation of the

identi�ed abstract syntax tree: The function meaning is su�cient to get the declara-

tion information; it can be simply implemented by pointers from the applications to the

corresponding declarations.

5 Conclusions

A new, declarative method to formally specify visibility rules of programming languages

was developed. This method is related to visibility descriptions in language reports and

does not use complex data structures to pass information through the abstract syntax tree.

We presented a logic{based �xpoint semantics for such speci�cations. As a side{e�ect,

the paper reveals the intrinsic recursion hidden in visibility rules.

The presented method is only part of a project for the speci�cation of context{

dependent syntax. We view the context{dependent analysis as a partial mapping from

abstract syntax trees to syntax DAG's containing arcs from used program entities to

their declaration. We described this mapping only for programming languages where the

73



visibility rules are independent of the typing rules. For languages in which overloading

resolution depends on user{de�ned types, we will get mutual recursive de�nitions for the

predicates expressing the visibility and typing. Of course, this is no problem for the pre-

sented approach, because we only have to generalize the mapping � , so that it can handle

several predicates.

References

[ANS83] ANSI. Pascal Computer Programming Language, ansi/ieee 770 x3.97{1983 edition,

1983.

[End72] H. B. Enderton. A Mathematical Introduction to Logic. Academic Press, 1972.

[GS86] Y. Gurevich and S. Shelah. Fixed{point extensions of �rst{order logic. Annals of pure

and applied logic, 32, 1986.

[Jon80] N. D. Jones, editor. Semantics{Directed Compiler Generation, volume 94 of Lecture

Notes in Computer Science. Springer Verlag, 1980.

[Ode89] M. Odersky. A New Approach to Formal Language De�nition and its Application to

Oberon. PhD thesis, Swiss Federal Institute of Technology (ETH) Z�urich, 1989. Diss.

ETH No. 8938.

[PH91] A. Poetzsch-He�ter. Formale Spezi�kation kontextabh�angiger Syntax von Program-

miersprachen. PhD thesis, Technische Universit�at M�unchen, July 1991.

[Rei83] S. Reiss. Generation of compiler symbol processing mechanisms from speci�cations.

ACM Transactions on Programming Languages and Systems, 5(2), 1983.

[SH86] G. Snelting and W. Henhapl. Uni�cation in many{sorted algebras as a device for

incremental semantic analysis. Conference Record of the Thirteenth ACM Symposium

on Principles of Programming Languages, 1986.

[Tar55] A. Tarski. A lattice{theoretical �xpoint theorem and its application. Paci�c Journal

of Mathematics, 5, 1955.

[Ua82] J. Uhl and andere. An Attribute Grammar for the Semantic Analysis of Ada. Lecture

Notes in Computer Science 139, 1982.

[Uhl86] J. Uhl. Spezi�kation von Programmiersprachen und �Ubersetzern, volume 161 of GMD{

Bericht. R. Oldenbourg Verlag, 1986.

[Wat84] D. A. Watt. Contextual constraints. In B. Lorho, editor, Methods and Tools for

Compiler Construction, pages 45{80. Cambridge University Press, 1984.

74


