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Abstract

While XML has become the de facto standard to represent structured data, com-
mon XML schema languages are quite restricted in their definition capability.
Structural constraints are widely used throughout all schema languages, some
languages also support global reference constraints, yet integrity constraints
based on local references or values and arithmetic comparisons are uncommon.
Data binding techniques, connecting XML with programming languages in a
more typesafe way than SAX or DOM, exist for most commonly used schema
languages. These techniques are only capable of handling structural constraints.
This thesis proposes and implements a binding between schemata supporting
more data-centric constraints and class-based object oriented languages. The
binding generates class files from a schema file, defines a translation between
objects and documents, and checks adherence to integrity constraints of doc-
uments and manipulations performed on the objects. The binding puts focus
on correctness of constraint checks and usability of the generated library, using
several heuristics to assist the user rather than supporting unorthodox schema
definitions.

Zusammenfassung

Obwohl XML de-facto Standard zur Darstellung strukturierter Datentypen ist,
sind die Spezifikationsmöglichkeiten mit gebräuchlichen XML Schemasprachen
beschränkt. Strukturelle Beschränkungen sind verbreitet und einige Sprachen
unterstützen globale Referenzen, doch Integritätsbedingungen, welche auf Wer-
ten basieren, oder gar arithmetischen Vergleichen zwischen diesen Werten, sind
ungebräuchlich. Datenbindungstechniken, welche für häufiger verwendete Sche-
masprachen verfügbar sind, stellen eine typsicherere und intuitivere Zugriffs-
methode von Programmiersprachen auf XML Dokumente als SAX oder DOM
dar. Diese Techniken überprüfen nur strukturelle Beschränkungen. Diese Arbeit
präsentiert und implementiert eine Datenbindung zwischen Schemata, welche
derartige, datenorientierte Beschränkungen unterstützen, und klassenbasierten,
objektorientierten Sprachen. Zur Datenbindung zählt die Generierung von Klas-
sen, einer definierten Übersetzung zwischen Objekten und XML Dokumenten,
sowie Kontrolle der spezifizierten Beschränkungen von Dokumenten, aus einer
Schemadatei. Dabei liegt der Fokus der Arbeit mehr auf Korrektheit der Inte-
gritätskontrollen und Benutzbarkeit der generierten Bibliotheken durch Verwen-
dung verschiedener Heuristiken als auf Unterstützung ausgefallener Schemata.
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Chapter 1

Introduction

XML has become a de facto standard to represent structured data and is often
used as interchange format for data in distributed information systems. To
restrict the format of the data, schema languages are used. XML documents
are considered to be valid with respect to a given schema, if they adhere to the
constraints defined within the schema. Commonly used schema languages like
DTD [15], XML Schema [13, 14], or Relax NG [4] focus on structural constraints,
like the existence of a specific child element.

Compared to data constraints possible in relational databases, these struc-
tural constraints are not sufficient for data restriction. Databases are based
around primary keys used to address elements within a table and foreign keys
which point to elements within another table. While there exists support for
global uniqueness and references to such elements, local uniqueness is not sup-
ported by schema languages.

Simple constraints on values are possible in most schema languages (Relax
NG for example offers definition of data types with restricting attributes and
enums), but comparison of two values stored within the document is not possible
using only these structural constraints let alone arithmetic operations on such
values. A typical example for such constraint would be the sum of weights of all
stored elements not exceeding an overall capacity which may be stored in the
document as well or be a fixed value hard-coded into the constraint.

Specification of integrity constraints as the above within XML schemata is
desirable and allows the definition of more restrictive data formats. Schematron
[5] provides an extension to the traditional, structural schema languages. It
is a rule-based technique which uses XPATH expressions for specification and
thereby provides a huge extension for specification of XML schemata. However,
since it is not intended as stand-alone language, but as addition to an existing
schema, tool support lacks functionality.

To work with the data structures defined by these schemata in programming
languages, so-called data binding techniques are applied. In an object-oriented
environment, these techniques usually supply a set of classes in the target lan-
guage which represent the schema definitions, or allow definition of a mapping
between elements within the XML schema and user-defined classes. Code is
subsequently generated to map between the two representations of data. When
reading from XML documents matching the schema, objects are instantiated.
This process is also called unmarshaling, marshaling being the inverse transfor-
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1.1. XCEND CHAPTER 1. INTRODUCTION

mation from objects back to XML documents. Note, that the expression ”data
binding” is by no means restricted to XML, but rather describes the general
mapping between data and programming languages. Still, XML data binding is
the most common application of this term. Data binding in the XML domain
offers a more intuitive and typesafe access method than low-level parsers like
SAX and DOM.

This thesis focuses on a data binding between XML-like languages and Java.
Between these two languages, a magnitude of different data binding tools is
available. Open source binding tools like JAXB [11] or Castor [3] exist as well
as commercial ones, for example the Liquid XML Data Binder [6]. For the
most part, these techniques work on the widespread DTD and XSD schema
languages, but binding techniques for more uncommon schema languages exist
as well. For Relax NG, a data binding tool called Relaxer [2] is available. For
Schematron assertions, no data binding tools seem to exist, only validators in
every conceivable programming language.

The core contribution of this thesis is the design of a data binding between
schemata that support mentioned constraints and Java. In more detail, this
includes the generation of Java classes out of schemata at design time and a
facility for translation between Java objects and XML documents. The binding
should adhere to defined integrity constraints, i.e. inhibit manipulations violat-
ing these constraints, and be capable of checking validity of XML documents
during unmarshaling. This concrete binding is based on the schema language
provided by the XCend technology, which supports the desired constraints.

In the following parts of this chapter, used technologies are briefly intro-
duced. Chapter 2 gives a more detailed overview of the envisioned translation
process and concepts of the used schema language. Chapter 3 describes transla-
tion of structural constraints as well as the generated interface for read access,
which already contains several constraint-based heuristics. The translation and
evaluation of non-structural constraints themselves is treated in Chapter 4. Ma-
nipulating access is channeled through user-specified procedures, introduced in
Chapter 5. A small case study in Chapter 6 describes some short examples how
users can work with the binding. Chapter 7 evaluates selected binding tools and
compares their handling of non-structural constraints with the proposed bind-
ing. Finally, Chapter 8 concludes and gives an outlook on possible extension of
the presented binding.

1.1 XCend

The XCend technology describes an XML schema language, which does not only
specify structural but also integrity constraints. This includes, for example,
further restrictions on primitive data types (for example String enumerations),
aggregate types (the sum of all weight elements), value comparisons (said sum
is smaller than the capacity, and reference constraints (if X exist, Y also has
to exist). While most of these restrictions are widespread in database systems,
they are rather uncommon in XML schema languages.

The schema language of XCend combines a pattern-based approach similar
to abbreviated Relax NG [4] with elements of rule-based approaches. While
patterns are used to describe structural constraints, rules define additional in-
tegrity constraints. These rules are directly embedded into the patterns, which
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allows implicit deduction of the context and a more abbreviated notation. A
more complete introduction to the schema language is given in [9], though the
presented syntax contains some outdated elements. Furthermore, a complex ex-
ample specified with the XCend schema language is introduced in Section 1.2.
XCend generates an invariant out of all specified constraints which has to hold
in order for documents to be valid with respect to a XCend schema.

In contrast to Schematron and other schema languages, integrity constraints
are checked incrementally for each change of an XML document, meaning that
only those constraints that are relevant for the performed change are checked.
This is achieved by generating weakest preconditions out of the schema invariant
and a manipulating procedure. If such a precondition holds and the document is
valid before, the document resulting from the manipulation is also guaranteed to
be valid. Procedures can contain several atomic manipulations and the invariant
might not hold in the intermediate states of the procedure execution. Still,
procedures are intended to be used for primitive manipulations and can be
composed to more complex methods.

Generation of the invariant and the weakest preconditions, as well as large
parts of the simplification process, are formally verified using Isabelle/HOL
[10]. Therefore, invariant and precondition generation, as well as several proven
simplifications, will be referred to as the XCend theory in the following chapters.

For specification of integrity constraints, XCend utilizes the concept of paths.
A document is represented by a finite set of path/value pairs. This path concept
also implies, that the order of elements or attributes is not allowed to carry
any information, since no such order exists on paths. Read access on such
a document does not yield single values, but multisets of values. Paths not
occurring in the document evaluate to the empty set. For all paths that occur
in the document, but have no assigned value, the unit value is returned. The
concepts of paths and multisets are explained in detail in [8] and [9].

The XCend technology, especially the theory for precondition generation and
simplification, has been developed by Patrick Michel. The design of the schema
language and abstract syntax used as input has been extended to fit the purpose
of this thesis.

1.2 STAT System

The SofTech Achievement Tracking System (STATS) is a mid-sized web appli-
cation using the XCend technology1 augmented with a manually written Java
data binding and web-based user interface. It shows, that XCend is power-
ful enough to describe practically useful schemata. Fragments of STATS are
used as a continuous example throughout this work to highlight aspects of the
translation.

It has been developed by the Software Technology Group at the University
of Kaiserslautern and is used to manage students attending courses and their
participation and results in exercises and exams.

1The detailed schema description of the STAT System can be reviewed at the XCend
website https://xcend.de/stats/schema
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1.3 Katja

The Kaiserslautern attribution system for Java (Katja) tool is also developed
by the Software Technology Group Kaiserslautern. It is capable of ”generating
immutable term-sorted data types together which a rich library out of concise
specifications.” Katja is used to specify the abstract syntaxes relevant for this
translation.

The code generator of the prototype implementation of the XCend data
binding is generally inspired by Katja’s translation process, described in [7],
and uses a modified version of Katja’s Java backend for code generation. More
details about the implementation of the translation process and influences of
Katja are described in Section 2.3.
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Chapter 2

Overview

This chapter provides a more detailed overview of the binding in general as
well as the used schema language. First, the envisioned translation process
and generated artifacts are introduced. Afterwards, the abstract syntax of the
XCend language is explained and further restrictions, not expressed by the
syntax alone, are documented.

2.1 Process

The envisioned translation process is depicted by Figure 2.1. First of all, a Java
library representing the abstract syntax of XCend is generated. This abstract
syntax represent the input of the binding generator. A first abstract syntax
tree is generated out of a XCend schema definition using the XCend frontend.
Subsequently, a schema invariant is generated out of the constraints expressed
by the schema. This invariant and procedure definitions are used to derive
weakest preconditions. Schema constraints, the invariant and the preconditions
are all subject to simplification. Precondition generation as well as simlpification
are performed by code generated from the XCend theory itself, i.e., they are
both formally verified. The schema invariant is not necessary for the binding
generator and is only used for precondition generation and simplification.

The resulting AST is used as input for the XCend Binding Generator, which
is the major contribution of this work. The output of this translation process
is the desired data binding. This includes

• Java classes matching the XCend schema capable of holding data matching
said schema

• methods mapping between the XML and Java representation of date

• a rich library for access and modification as defined within procedures

The binding can be used to easily access data from XML documents in form
of Java objects, modify these objects with the specified procedures, and mar-
shal them back to XML. During all these operations, the generated objects are
guaranteed to adhere to all specified constraints. Creation of objects violating
these constraints is not possible.
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Figure 2.1: The overall translation process of the XCend data binding
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2.2 Abstract Syntax

The input for the XCend binding generator is an abstract syntax tree defined
in three Katja files described in the following.

This section is also used to introduce and define several terms concerning
the semantics of XCend and non-structural requirements not expressed with
the frontend syntax. These Katja terms are subject to simplification performed
within the theory, which provides more strict guarantees on the input for the
binding generator. These guarantees are explained here as well.

2.2.1 Schema

This part of the abstract syntax contains structural information about the
XCend schema. This concerns nesting and repetition of elements and attributes.
It therefore specifies all structural constraints of the schema in a similar way as
commonly used XML schema languages. As already mentioned, these structural
definitions are inspired by Relax NG compact syntax [4].

Furthermore, this part of the abstract syntax contains assertions for the
defined nodes, which are used to specify integrity and value-based constraints,
and a set of procedures. Assertions and procedures are refined in other Katja
files described further below.

The translation of these structural constraints is explored in Chapter 3.

Schema ( Elem elem , Procs procedures )

Node = Elem ( Label name , Group content , Const ra int s cons )
| Attr ( Label name , Simple content , Const ra in t s cons )

Group ∗ Pattern
Const ra in t s ∗ Asse r t i on

First of all, a schema has to consist of an element and a list of procedures.
Schemata consisting only of a single attribute are not allowed. Elements and
attributes are very similar and only vary in their content. Both have a name
and can contain several embedded assertions. In the case of an element the
content is a group, which is a list of patterns (described below). The attribute
on the other hand contains only simple content. Elements and attributes are
summarized as nodes.

Simple =
Typed ( Type type )

| Enum ( Type type , Values ca s e s )

Simple content is defined as either a single type, or a typed enumeration of
several values. Both Type and Values are defined in the imported assertion file,
but are rather intuitive. So far, the only types supported are integers, strings,
key values and the singleton value unit.

Keys are used as identifiers do differentiate repeated elements. The key sort
of Katja contains a single string as value. Since keys are a complex and very
important concept, both for XCend and the binding, they are explained in detail
in Section 3.4. Note, that key typed enumerations are not allowed.

The unit value is used to model unassigned values. Considering this abstract
syntax, this includes all read accesses using a path to an element, since elements
cannot be assigned any value. Also, non-initialized attributes may yield unit
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values. A unit typed enumeration is not allowed, since only one value exists for
this type and an enumeration of several distinct values is not possible.

The content of elements is more complex and consists of several patterns.

Pattern =
Fixed

| Choice

Fixed =
S i n g l e ( Node node )

| Option ( Node node )
| Kleene ( Element elem )

Choice ∗ Element

Four kinds of patterns exist. A Single pattern indicates exactly one node.
So the child node always exists within the parent element and can be either
another element or an attribute. The Option pattern allows the child node to
be left out as well. Kleene describes a repeated element. Note, that attributes
are not allowed to be repeated. Repeated elements are implicitly augmented
with a special attribute key, which represents the locally unique key of the
element used for selection. Last, the Choice pattern contains a list of possible
child elements, one of which has to be contained within the parent element.
Attributes are also not allowed here.

The design of this specification and therefore the XCend schema language
requires explicit naming of all defined types. The names of elements nested
into each other constitute the paths mentioned in the introduction. The keys
of repeated elements are part of these paths as well. Since paths have to be
unique, this also requires different elements or attributes nested in the same
element to have different names. This greatly reduces naming problems during
translation and also enhances understandability of the generated binding, since
types can be named the same as their corresponding schema elements and few
types without direct representation in the schema have to be generated.

2.2.2 Assertions

The assertion part of the abstract syntax is used, both by schemata and proce-
dures. It defines assertions for nodes or procedures. Note, that not all combina-
tions of this abstract syntax definition are semantically reasonable and further
restrictions are made during translation. For the most part, these are explained
in the following paragraphs and Section 3.1. Translation of assertions is de-
scribed in Chapter 4.

Relat ion =
Equal ( ValueExp l e f t , ValueExp r i g h t )

| Less ( ValueExp l e f t , ValueExp r i g h t )

L i t e r a l = Li t ( Bool p o s i t i v e , Re lat ion r e l )

D i s junc t i on ∗ L i t e r a l
Conjunction ∗ Dis junc t i on

Asse r t i on ( Conjunction conj )

12
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An assertion is declared in CNF (conjunctive normal form), meaning it is
a conjunction of disjunctions of literals. Single literals compare two value ex-
pressions under a relation, which is either equality or less than. These top-level
value expressions always have to yield single values and in case of the Less

relation have to yield integer values.
Relations are evaluated using a ternary logic, which is explained in detail in

Section 4.1.1.

ValueExp =
Const ( Value va l )

| Var iab le

| RKey ( Label l a b e l )
| Read ( PathExp pth )

| Sca l ( ValueExp l e f t , ValueExp r i g h t )
| VPlus ( ValueExp l e f t , ValueExp r i g h t )

| Aggregate

Var iab le =
FVar ( Name name )

| PVar ( Name name )

Aggregate =
Sum ( ValueExp arg )

| S i z e ( ValueExp arg )
| Count ( ValueExp arg , ValueExp va l )
| Tal ly ( ValueExp arg , Type type )

Generally, value expressions represent multisets of values. While the theory
works only using these multisets, the binding can exploit schema information to
deduce additional details about typing and cardinality of the returned multiset.

The most simple value expression is the constant, which defines a single,
typed value. As described in the schema syntax, the available types are strings,
integers, keys and the unit value.

Variables can either be free or program variables. Free variables are implicitly
universally quantified and exclusively used for key values. Their application is
explained in Section 4.1.3. Program variables are only used in procedures. Their
value and type are either provided by the environment, i.e., they are parameters
of a procedure, or defined within the procedure itself (see Section 5.1).

RKey models access to the key of a repeated element. If the contained label
is the empty string, the key of the current element is selected, otherwise the
key of an ancestor with the given name. This element can only be interpreted
for constraints embedded in a node, since a context is required for deduction of
such a key. Furthermore, this expression is not part of the XCend theory, and
is reduced for invariant and precondition generation.

Read expressions are the most complicated value expressions to translate,
yet, at the same time, most interesting for the binding. A read expression
yields the value stored in a document for a given path expression. Since the
XCend theory allows values of different types to be stored for a single node, the
type of such a read expression cannot be statically determined in the theory.
However, the binding can exploit additional information provided by the schema
part of the AST described earlier. Considering this schema information, the
values of all nodes are homogeneously typed and the type of a value stored for a

13
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specific path, and consequently the type of a read expression, can be statically
determined. A read of a path without a mapping yields the empty set.

Scal calculates the scalar multiplication of two given value expressions left
and right. Therefore, the left value has to be a single value, while the right
side can be an arbitrary multiset. The XCend theory then filters this multiset
down to only integer values and applies the scalar multiplication to only those.
Consequently, a scalar multiplication with a multiset without any integer values
will result in the empty set. If the left side is not a single integer value, the
evaluation of the scalar multiplication will fail. Implications of this are described
in detail in Section 4.1.1.

VPlus merges two multisets of values together. However, according to sim-
plifications done on the XCend theory, it can only occur inside a sum aggregate.
Therefore, it can be interpreted as the addition of all contained integer values.

The vplus is the only operation merging two multisets together. These
multisets might have different types, but the wrapping sum aggregate guarantees
the resulting value to be a single integer. Since the read expression, as described
above, can also be statically typed, all value expressions are guaranteed to be
homogeneously typed after simplification, even though the XCend theory is
generally untyped.

Aggregates take a value expression as parameter and always yield a single
Integer value. The sum aggregate calculates the sum of all integer values con-
tained in its parameter. Non-integer values are simply ignored. The sum of the
empty set or a set containing no integer values is 0. Size returns the number
of values in the contained value expression. Count counts the occurrences of a
single value val in the argument, tally counts how often values of a given type
occur in the argument.

Path expressions point to nodes of a document. The abstract syntax for
path expressions has been expanded compared to the theory, where only Root

and Step are defined. Since the XCend binding also has the information from
the schema syntax, further constructs can be used.

PathExp =
Root ( )

| Dot ( )
| Parent ( Label name )
| Step

Step =
Path ( PathExp par , Label l abe l , ValueExp keys )

| Kind ( PathExp par , Label l a b e l )

The root naturally references the root declared in the schema syntax. As-
sertions embedded within nodes can use additional constructs. The dot refers
to the current node, the assertion is embedded in. The parent reference points
to the first ancestor of the surrounding node with the given name. Translation
will fail if these path expressions are used outside an embedded constraint or
an ancestor with the specified name does not exist.

Path steps select all children of a node with the given label, if their key is
contained in the given key set. For non-repeated elements, this key has to be the
null key. Kind steps work in a similar way but do not require a key set. These
steps basically represent a simplification on paths described in [9]. A kind step
corresponds to a path step using all conceivable keys. Most of these accesses will
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result in a unit value, since the path is not contained within the read document.
Since these values will be filtered by surrounding expressions (i.e. read or an
operation), this can be reduced to only those keys actually contained within the
document under this path. For kind steps on non-repeated elements, this only
leaves the null key.

Paths to nodes not occurring in the schema result in an exception before-
hand. Usage of such paths is considered to be an error in the specification rather
than intended read of an empty set. This is different from the theory, where
paths cannot be evaluated statically due to the missing schema information and
the empty set is returned.

2.2.3 Procedures

Procedures describe a way to manipulate a term. XCend generates a precon-
dition for each procedure out of the schema invariant. If this precondition and
the schema invariant hold before procedure execution, the invariant will also
hold afterwards and the procedure can be safely executed. The translation of
procedures is covered in Chapter 5.

Note that the preconditions, though naturally required as input for the bind-
ing generator, are generated by XCend and do not have to be written by the
user. Still, the frontend does offer definition of additional constraints on proce-
dures that cannot be generated automatically, for example constraints modeling
access rights.

Procedure ( Name name , Parameters params , Statements body ,
Asse r t i on pre )

Parameter ( Name name , Type type )

Procs ∗ Procedure
Parameters ∗ Parameter

A procedure consists of a name, several parameters, a body and the men-
tioned precondition in form of an assertion. Parameters are typed and have a
name. Since procedures describe modifying access, they do not need a return
value. The procedure body consists of a list of statements.

Statement =
I t e ( L i t e r a l cond , Statements sthen , Statements s e l s e )

| Asgn ( Name name , ValueExp exp )
| Operation

Statements ∗ Statement

Ite describes a conditional statement. If the given condition evaluates to
true, the then statements are executed, otherwise the else statements. Asgn

assigns a value to a program variable, which can be addressed in later statements
of the procedure body. Both statements are basically for user convenience and
could be achieved through other means. Furthermore, a statement can be one
of the following operations.

Operation =
I n s e r t ( PathExp pth , Label l abe l , ValueExp key , ValueExp va l )

| Update ( PathExp pth , ValueExp va l )
| Delete ( PathExp pth )

15
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These three operations directly modify an XML document. Each is supple-
mented with a path expression, which specifies the context of the modification.
Delete removes the node and all its descendants from the document. Update

sets the value of the node to the given value expression. Insert adds a child
node with the given label, key attribute and value. All value expressions in these
operations are required to yield single values and path expressions are required
to point to a single node.

2.3 Aspect Implementation

Inspired by the design of the Katja system, the implementation of the XCend
data binding uses generation aspects for code generation (see Table 2.1). A
single generation aspect contains every action that has to be taken to achieve
a given aspect of the generated code. Hence, the generator is split by features
rather than by generation phases, which allows easy addition of new or modifi-
cation of existing functionality. Still, complete independence of these aspects is
not possible, since the generated code is strongly interdependent. For example a
change of the naming of classes in the basic aspect would also result in necessary
changes for types of attributes and return types or parameter types of methods
working with these classes in the component aspect.

The code generation backend uses a slightly modified version of the Java
model and unparser of Katja’s Java generation backend. Further details about
the generation backend can be found in the description of Katja in [7].
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b
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c
a
sp

ec
ts

Basic Aspect
- generates classes, interfaces, and enums for
elements and nests them as in specification

Name Aspect - sets class names and modifiers

Type Aspect - handles subtype relations of choice subtypes

Construction Aspect - creates constructors for classes and enums

Key Aspect
- creates classes and interfaces for used key
types and sets compatibility between keys

Component Aspect - creates attributes and basic access methods

u
ti

li
ty

as
p

ec
ts

Collection Aspect

- creates collection classes with all their at-
tributes and methods
- generates methods for multiset selection of
child elements

Equality Aspect
- provides equalsStructure method for gener-
ated classes

co
n

st
ra

in
t

as
p

ec
ts

Parse Aspect
- creates methods for marshaling and unmar-
shaling concrete terms to and from XML

Assertion Aspect
- creates methods for checking adherence to
assertions defined within the schema

Procedure Aspect

- generates static procedures from the schema
in binding class
- binds procedures in generated classes if ap-
plicable

Table 2.1: A list of generation aspects used by the generation backend
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Chapter 3

Structural Constraints

After consideration of all input files and the translation process in general, the
constructs defined within XCend now can be related to similar constructs in
Java. First of all, the structural constraints of the XCend schema description
have to be modeled.

Structural restrictions of XML documents are covered by the the first de-
scribed Katja file. They are declared with a pattern-based approach using nodes,
which represent XML elements or attributes, and patterns to describe their re-
lations, cardinality, and nesting.

When comparing XML schemata and documents to the object oriented
world, it seems intuitive to compare schemata with classes and XML docu-
ments matching said schemata with objects. Like in XML, objects do adhere to
their specifying class and provide all the declared fields. Following these simi-
larities, the general idea of the XCend binding is the generation of a class for
every element occurring in the schema and a field for each attribute.

Mapping from a structural type system like XML to a nominal type system
like Java, generally spawns naming collisions. While in XML, two elements with
the same name may exist in the same element and be still uniquely identified
by their order or structure, this is not possible in Java. Flattening of the XML
structure to classes on the same hierarchy level would easily lead to conflicts
between generated classes. In most schema languages, patterns don’t even need
a name at all. These problems usually require extensive (re)naming, making the
resulting binding less intuitive. Section 3.1 describes, how the XCend binding
treats such name conflicts between user-defined elements and generated types.

The translation of nodes and class generation is described in more detail in
Section 3.2. The following Section 3.3 explains fields and methods for read access
generated for each pattern contained within these nodes. Information about
the structure of the schema is sufficient for these methods. Still, constraints
are already analyzed to provide more advanced functionality, for example key
compatibility introduced in Section 3.4 or selection of elements by isomorphic
names described in Section 3.5. Section 3.6 covers how the binding handles the
multiset semantic of XCend.

Generated classes are wrapped inside a binding class, which provides access
to several utility functions working on the complete schema, for example mar-
shaling and unmarshaling (see Section 3.7). Finally, Section 3.8 gives a more
complete translation example covering all features introduced in this chapter.
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3.1 Name Collisions

To provide unambiguous paths, the XCend schema language does not allow to
nest nodes with the same name in the same parent element. Most patterns are
implicitly named by their contained element, the only exception being the choice
pattern, which contains several different elements (see Section 3.3 for details).
Still, nodes defined within different elements may have the same name and flat-
tening the structure would result in conflicts in Java. To prevent those conflicts,
the generated Java classes are nested in the same way as their respective XML
elements. Each element in XCend will define a new namespace in Java and
nodes with the same name but different parents can no longer lead to conflicts.
This nesting approach is also applied by JAXB, a common Java binding tool
for XSD schemata [11]. If the schema is well-designed and no such duplicate
names exist, static imports can be used to remove necessity of full qualification
of each type. The class corresponding to the root element of schemata will fur-
ther be addressed as root class. It should be mentioned, that the nesting depth
of Java classes in Java 6 is only limited by the length of the class name, which
is qualified using all outer classes. Since qualification with the names of parent
elements would also be the most intuitive way to rename ambiguously named
elements in the schema, using class nesting is not more restrictive than using a
flat class hierarchy.

element a {
element b {

element d { }
}
element c {

element b { }
element d { }

}
}

−→

A

B

D

C

B

D

Figure 3.1: Different name collisions prevented by the nesting of classes

This nesting approach does avoid most conflicts resulting from user-defined
classes. Figure 3.1 shows several element collisions that are avoided by the
nesting of generated classes. Two elements with name b and two elements with
name d are introduced by the XCend schema fragment. Generating those into
a flat class hierarchy would require renaming of both classes using the parent
element names for qualification. The proposed nesting solves these problems
by nesting the classes of the same name in different parents, using the same
hierarchy as XCend.

Not all conflicts can be solved by nesting. XCend allows nodes to be nested
inside elements with the same name. The path to such an element is still
unambiguous in XCend, for example the path /a/b/a, depicted in Figure 3.2.
In Java, this nesting of such classes is not allowed, since a nested class is not
allowed to hide an outer class.

Collisions with generated attributes, methods or classes not appearing in the
schema are possible as well.

Furthermore, it is prudent to follow naming conventions of Java. These
include type identifiers starting with an upper case letter, attribute, method
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element a {
element b {

element a { }
}

}

−→

A

B

A

conflict

Figure 3.2: A remaining conflict between outer and nested class

and parameter identifiers to start with a lower case letter and generally usage
of medial capitals. Following these conventions in a case-sensitive type system
may result in additional collisions. Still, the benefits for usability are considered
to outweigh these restrictions on the schema.

These remaining collisions of names, either directly from the schema, from
naming conventions, or from names for generated methods, fields, or introduced
helper classes, are not solved by the generator and simply lead to errors. Colli-
sions with Java keywords also immediately stop the translation. Cryptic renam-
ing to avoid name collisions would not be beneficial for usability and readability
and therefore defeat the purpose of following Java naming conventions in the
first place.

3.2 Nodes

The two general types of nodes to be translated are elements and attributes.
While both do have names and may contain assertions, elements contain a list
of patterns while attributes only contain simple content.

Elements Elements are translated as classes in Java. A class generated for a
specific element is called element class. The nesting of elements is represented
by nesting of generated element classes to avoid name collisions. Using the same
nesting hierarchy makes it easier to relate the generated Java types with their
respective schema elements. No deviation from this general rule is necessary.

For constraint translation, a reference to the parent element is required. Such
a reference is added into each element class and set during object instantiation.

Attributes Attributes on the other hand do not contain other nodes, but only
simple content. This either means a general typed value, or an enumeration,
restricting the value space to a given set. XCend currently supports the four
basic types integer, string, key and unit. Integer and string attributes are similar
to their counterparts in other programming languages and are rather intuitive
to handle. The XCend integer type covers the complete value space of integer
and is therefore mapped to the Java type BigInteger. Key values are used
to reference repeated elements. They are described in detail further below in
Section 3.4. Unit values are not intended for attribute use at all. They rather
describe a node, which has no value assigned. Furthermore, a unit attribute (or
even enum) would make no sense, since all unit attributes always would have
the same value. Therefore, they are not supported by this binding.
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In theory access of an attribute would only yield the surrounding node and
require an explicit read to retain the value. The binding removes this step and
directly returns the content of the attribute. Non-existing attribute nodes are
encoded using the value null. This results in the attribute node and the attribute
value to be merged on the Java side. At first glance this might be a problem,
since a state where the attribute node exists, but no value is assigned cannot
be distinguished from a non-existing node. However, such a state violates the
schema invariant and can only be reached as intermediate state of a procedure
execution.

Typed Values For typed values of type integer or string, introduction of
a new type is not necessary. These types are already provided by the Java API
and can directly be used. This deviates from the general translation pattern of
nodes, but simplifies user access to these attributes.

Key attributes provide a more complex problem. Since they reference re-
peated elements, a first idea would be translating them not explicitly as keys,
but as direct reference to the repeated element. However, such key attributes
can reference not only a single repeated element, but several different repeated
elements, more specifically objects of different classes using the same key. Con-
sequently, a simple field reference to an object is insufficient. Instead, a new
key type is introduced for each key attribute, which stores the value of the key
and can be used as parameter for access methods. The translation of keys is
described in more detail in Section 3.4.

Enumerations They value space of an enumeration attribute is further
restricted by listing a set of allowed values. This requires knowledge of possible
values at specification of the structural constraints. Since keys are only intended
as internal identifier, comparable to object identifiers, and should not be used
to convey information, their values cannot be statically determined and key
enumerations are not possible.

Before the translation of an enumeration, duplicate entries are eliminated
and the user is informed of these cases. The same applies for enumerations
consisting of only a single value (after duplicate elimination) or no value at all.

Enumerations can be translated in several ways. The most primitive trans-
lation would be similar to the translation of typed values, augmented with a
check after each assignment to guarantee, that only the explicitly declared val-
ues are used. While this provides an easy translation, it seems rather unhandy,
since erroneous assignments are only detected during runtime. Also, this con-
struct allows no switches over return values of the enum type but requires again
comparison to all declared values, which would require user knowledge about
possible values.

Java supports enums itself since version 5.0. This construct can be used
instead, providing the user with static guarantees and switches over all pos-
sible values of the enum. However, Java enums are not typed like enums in
XCend. They can be seen as classes with an independent constructor for each
possible value. This also means, that a simple Java enum does not contain any
values, especially no BigInteger value, but encodes the value using the name.
However, enums can be used like classes and therefore can specify further fields
and methods. To realize the behavior of XCend enums with Java enums, it is
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necessary to introduce an attribute to the enum which holds the actual value de-
scribed. The instances of the enum are then identified using generic names, e.g.,
”value ”, supplemented with running number. The actual value is annotated
using JavaDoc, so the user can still distinguish these instances.

While being functional, preventing erroneous assignments statically, and
supporting switches, this solution lacks usability as well, since users have to
read the JavaDoc annotated value for each generic enum instance in order to
find a specific instance required. Heuristics are possible to make this more user-
friendly by changing the generated name of enum instances. For Integer enums,
the running number in generation of the instance name can be replaced with the
actual name. Since duplicate values are eliminated, it is guaranteed, that each
number and therefore each generated name will only occur once and no conflicts
arise. String enums are more restricted, but also leave room for improvements.
If no conflicts with other instance identifiers exist and if it is a valid Java iden-
tifier, the upper case string of the actual value can be used. For reasonable
examples, these heuristics should provide user-friendly enum implementations.

A different approach could be the usage of inheritance. This requires a
translation of each possible value as a subtype of a common supertype which
represents the type of the enum. While being functional, this solution generates
a lot of additional classes and is less intuitive for the user of the binding. In
addition, the problems with names of enum values as described above still has
to be solved in a similar way.

Using Java enums augmented with naming heuristics for enum instances
seems to be the most intuitive and practical approach and was chosen for this
binding.

3.3 Patterns

Patterns are used to specify the cardinality of child elements, for example, that
an element is optional or required. Child elements are generally translated as
package local fields for the parent element, but the type of the field and accessing
methods differ according to the type of pattern. Since the fields themselves are
package local, they may be used for faster access by other generated classes, but
not by the user himself, who is restricted to the generated access methods. The
names of the generated field and all selection methods generally depend on the
name of the node contained within the pattern. As a consequence, the selection
chain for an element in Java is very similar to XCend path expressions, and
relation between the two is intuitive. In the following, the characteristics of the
patterns and the resulting translations are discussed.

Single and Option Patterns Single and optional patterns are the most
simple ones to translate and are very similar. A single pattern denotes a child
node that always exists. A node wrapped within an optional pattern may be left
out, i.e., it may exist at most once. Consequently, it is sufficient to introduce a
single field holding an object of the type of the contained node.

Non-existence of the contained element is denoted by assigning null to the
field. A field resulting from a single pattern with a null value would violate
the schema invariant, but may occur in intermediate states during procedure
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execution. For all states exposed to the user, a field generated from a singleton
pattern can never be null.

A simple ”get-method” (selection method) is generated to retain the child
node. For optional pattern the child node may not exist and the generated
selection method may throw an exception. These patterns are augmented with
an additional boolean method (”has-method”), which checks if the generated
field is null and the child element does not exist.

Kleene Pattern Kleene patterns represent a repeated element, i.e., a set of
elements of the same type. Repeated elements are identified and distinguished
using a locally unique key, and no two elements with the same key can exist
within the same parent. The element contained in the list is supplemented with
a field for the key described in the and a method for retaining this key.

The usage of keys to identify elements in a set is identical to the Java map,
which also models a set of indexed elements. Kleene patterns are translated as
maps from the key type to the type of the contained element. As stated above,
generation of key types is more complex and therefore handled an individual
section below.

In contrast to single and optional patterns, a simple selection method is
insufficient for kleene patterns in order to select a specific element. The pattern
requires a key to distinguish individual elements. Thus, the basic selection
method generated for kleene patterns takes a key value as parameter. Similar
to optional patterns, this selection may fail with an exception, if no element
with the given key exists. A method for existence checks is introduced as well
to provide safer access, which also is supplemented with a key parameter.

element s t a t s {
element accounts {

element account ∗ { }
}

}

The XCend schema above shows a small example of a kleene pattern defini-
tion. The star indicates, that the element account is repeated. This example
will be translated into the code fragment below. The generation of key classes
has not been covered so far, but will be explained in Section 3.4

public stat ic class Stat s {
public stat ic class Accounts {

Map<Account . Key , Account> accountMap ;

public Account account ( Account . Key key ) throws
NoSuchElementException { . . . }

public boolean hasAccount ( Account . Key key ) { . . . }

public stat ic class Account {
Key key ;
public class Key { . . . }

}
}

Note, that these methods are also provided by the Java Map interface, namely
get and containsKey. The functionality of the methods generated for the
binding can therefore easily be realized by delegating the calls to these methods.
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Choice Pattern The choice pattern contains several elements one of which
has to appear at this position in documents. The choice is exclusive, meaning
that only one of these elements may appear.

Choice patterns also translate into a single field, typed using a choice super-
type, which is extended by all possible choices. This translation models the XOR
semantic of the choice pattern in Java. Translation as a single field guarantees,
that only one of the choices can be stored at the same time. The supertype
ensures that only elements from inside the choice pattern can be stored. Using
a distinct field for each possible choice does not only require additional checks
to ensure that only one element for the choice is stored at the same time, but
does also contribute to namespace pollution, since each choice field needs to be
named.

However, the choice supertype has disadvantages as well. Naming of this
type is problematic, since choice patterns are not explicitly named. Conse-
quently, the supertype also contributes to namespace pollution. There are three
basic options for naming the choice supertype: using a generic name, using the
name of the parent node or the names of child nodes. All three require some
modification of the name to avoid collisions with parents, children or other
choices within the same element.

For this binding, the second approach has been chosen. The name of the
parent element is augmented with a choice suffix. This solution is less generic
than the using a generic choice identifier and does not result in unreasonably
long class names for larger choices. If several choices are contained within the
same element, a number is added to the choice name. This solves name conflicts
between choice supertypes with the same parent.

Using numbers to qualify choices spawns considerations about code stabil-
ity1. First of all, adding a second choice to an existing single one changes the
name of this choice, which may promote the wish to use numbers regardless of
the choice count. Yet, how these numbers are used for qualification still has
not been explained. There are two possibilities to be considered: either using
the position within the parent element or only the choice order. Both solutions
suffer from instability. While the first one is robust against changes of already
declared patterns, it remains unstable when new patterns are inserted, even
without the patterns being choices. The second solution on the other hand is
unstable considering changes of existing patterns into choices or insertion of
new choices. For the prototype the first solution has been chosen, yet both are
considered to be of equal stability. In any way, the stability loss from omitting
a number for single choices is considered negligible in comparison and doing so
results in better readability and therefore usability.

A selection method is introduced for each possible subtype, which internally
checks the type of the stored value, casts it if possible, and throws an exception
otherwise. This translation allows to easily map paths from XCend into Java
syntax, since these selection methods match the element names defined in the
schema. While usage of a single selection method returning the choice supertype
is possible, such a method exposes the supertype, requires explicit user casts of

1Code stability means that changes of the source file do not influence unchanged parts.
For example, changing a node A should not influence the translation of any other node B. The
generated code for the other node is ”stable”. This is important, when the generated libraries
are embedded in other code fragments. If the schema file is modified, only the code using the
modified parts should have to be changed.

24



3.3. PATTERNS CHAPTER 3. STRUCTURE

the returned supertype, and does lead to different selection steps from XCend
in order to select the same element. This translation hides the choice supertype
from the user completely. It is not possible for the user to obtain an actual
instance of the choice supertype. This allows the supertype to be realized as
an abstract class and emphasizes, that intricate name generation for choices
supertypes or explicit naming of choices in the schema is unnecessary for a
user-friendly binding.

In Java, subtyping is realized with inheritance. The translation generates
a choice supertype, i.e., an abstract class without any element-specific meth-
ods, which is extended by the classes generated from elements inside the choice
pattern. Using abstract classes instead of interfaces for the choice supertype
allows hiding of utility methods that are generated into the supertype and are
then dynamically bound to each subtype, e.g., methods for (un)marshaling or
checking assertions.

element entry {
element book {

attribute author { s t r i n g }
attribute t i t l e { s t r i n g }

}
| element cd {

attribute a r t i s t { s t r i n g }
attribute a lbumt i t l e { s t r i n g }
element t rack ∗ {

attribute t i t l e { s t r i n g }
}

}
}

The XCend specification above shows a small usage example of choices. Below,
the translation to Java is outlined. An abstract choice supertype EntryChoice

is generated, which is extended by both subtypes. The attribute introduced for
the choice is of this type. The generated methods however return one of the
subtypes, but may fail if the object is of the wrong type for the selector method
called.

public stat ic class Entry {

// a t t r i b u t e s o f the Entry c l a s s
EntryChoice entryChoice ;

// methods o f the Entry c l a s s
public boolean hasBook ( ) { return entryChoice instanceof Book ; }
public Book book ( ) throws NoSuchElementException {

i f ( hasBook ) return (Book ) entryChoice ;
else throw new NoSuchElementException ( ”Book” ) ;

}

// analogue to the methods above
public boolean hasCd ( ) { . . . }
public Cd cd ( ) throws NoSuchElementException { . . . }

// nes ted c l a s s e s o f the Entry c l a s s
public stat ic abstract class EntryChoice { . . . }
public stat ic class Book extends EntryChoice { . . . }
public stat ic class Cd extends EntryChoice { . . . }

}
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3.4 Keys and Compatibility

One of the four basic types of XCend, and the most complex for the binding, is
the key type. Keys are used to uniquely identify repeated elements, i.e., they
are locally unique for elements with the same parent and name. In the XCend
theory, keys are not refined any further leaving keys of repeated elements with
different labels or parents interchangeable. Considering the STATS example,
there are cases where this interchangeability of keys is desired. For example,
the key of an examiner right in a user account should be usable as key for
accessing the respective exam. However, there are more examples, where keys
from different positions should not be used. For example, it would make no
sense to use account keys to access exams.

So to prevent accidental misuse of a key at an unintended position, keys
should generally not be exchangeable. The mentioned cases of desired inter-
changeability have to be annotated using assertions. To prevent general inter-
changeability of keys, an individual key class is created for each key occurring
in the schema, i.e., repeated elements as well as key attributes. To realize in-
terchangeability of selected keys, the concept of key compatibility is introduced,
which describes which keys can be substituted for a given key.

Key compatibility is defined as an equivalence relation between key types,
i.e., it is reflexive, symmetrical, and transitive.

A key type A is considered compatible to a key type B (and vice versa), if
one of the following expressions occurs in any assertion within the document:

• A equals B

• count with A as parameter is called on a set of B

• inside a path expression, A is used as key where B was expected

This compatibility is realized using additional interfaces for each key class.
The interface type is used whenever the key is used as parameter, the actual
implementation type when the key is used as return value. The generated key
class implements its own interface and the interfaces of all compatible keys.
This allows key objects to be used whenever a compatible key is expected.

element s t a t s {
element account ∗ {

[ x != # ] // # marks the key o f the current account element
[ exists / s t a t s / e x e r c i s e s / e x e r c i s e / a s s i s t a n t [ x ] ]
[ exists / s t a t s /exams/exam/ examiner [ x ] ]

}
}

The fragment above shows an example using free variables. Since keys in the
theory are not typed, free variables can take on values of different key types.
These key types are all made compatible. If compatibility between a free variable
and another key type is declared, this key type is compatible to all keys types,
the free variable is used for. So looking at the example above, the key attribute
of account and the keys of assistant and examiner are all compatible.

Key compatibility effectively allows usage of key attributes as parameters of
selection methods of repeated elements on the one hand and easy assignment of
the key values of such repeated elements to key attributes on the other hand.
The following example depicts the effects on code working with the binding.
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element s t a t s {
element account ∗ {

element examiner ∗ { [ exists / s t a t s /exam[#] }
}
element exam ∗ { [ s ize ( / s t a t s / accounts / examiner [#] ) > 0 ] }

}

Both assertions in the XCend fragment above state, that the examiner key is
compatible with the exam key. Accordingly, an examiner key can be used,
whenever an exam key is expected and vice versa. The XCend fragment is
translated to the Java fragment below. Selection methods use the interface
types, which are implemented by all compatible keys. Therefore, compatible
keys can be used as input for these methods.

public stat ic class Stat s {
. . .
public Exam exam(Exam. KeyIF key ) throws NoSuchElementException {

. . . }

public stat ic class Account {
. . .
public Examiner examiner ( Examiner . KeyIF key ) throws

NoSuchElementException { . . . }

public stat ic class Examiner {
. . .
public stat ic interface KeyIF { . . . }
public stat ic class Key implements KeyIF , Sta t s .Exam. KeyIF {

. . . }

}
}
public stat ic class Exam {

. . .
public stat ic interface KeyIF { . . . }
public stat ic class Key implements KeyIF , Sta t s . Account .

Examiner . KeyIF { . . . }

}
}

The introduction of these interfaces on the same hierarchy level as their im-
plementation has one significant drawback. Interfaces in Java are public, static,
and have to be accessible at top-level. In order for the interfaces to be statically
accessible at top-level, all outer classes of the interface have to be declared pub-
lic and static as well. This basically requires all classes generated by the binding
to be declared public and static. This implies, that elements are not translated
as inner classes but as static nested classes. Instances of static nested classes do
not implicitly refer an instance of the outer class, consequently, explicit storage
of the parent reference is necessary. Alternatively, all key interfaces could be
generated in the binding class. However, this would result in name collisions and
require extensive renaming of all key interfaces. Namespace pollution due to the
explicit parent reference is considered to be a negligible problem compared to
renaming necessary due to key collision.

XCend keys are not supposed to carry information besides references to or
from other repeated elements. To ensure this, key generation and management
is handled by the binding itself and is not exposed. To this end, key constructors
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are package local and each repeated element provides a static method, which
generates a fresh, locally unique key. Note, that the prototype implementation
generates globally unique keys. This internal key management also reveals why
key enums being rejected by the binding. Since keys are created during runtime
and their creation is not transparent to the user, it cannot be clear which keys
may exist during specification of the source schema. Consequently, no meaning-
ful key values can be provided for such an enum. If keys are managed internally
and not exposed, the actual key values do not have to be strings as in the XML
representation. Instead, integer values are used as key values. This increases
efficiency of key comparison and generation of fresh keys.

Extension of the Key Concept A typical use case considering compatible
keys is selecting an element with the compatible key of another element the user
already has access to. The binding requires explicit selection of the key of such
an element.

s t a t s . exam( examiner . key ( ) )

In this small example, an examiner object has already been retrieved. To
select the referenced exam, the key has to be selected explicitly. It would be
easier to directly use the element itself as input for selection, i.e., removing
the key step on the examiner object. This pattern occurs quite often in code
working with the stats binding.

At first glance, this can easily be done by letting classes generated from
repeated elements implement key interfaces or extend the contained key class.
Since all classes are public and static, and therefore are all compiled into inde-
pendent class files, this should not be a problem.

classA

KeyIF

KeyImpl

classB

KeyIF

KeyImpl

classC

KeyIF

KeyImpl

Figure 3.3: Class hierarchies forbidden in Java

However, Java does not allow class hierarchies such as depicted by Figure 3.3,
not even for static classes. A class is neither allowed to implement nor extend
classes or interfaces nested in itself. This also excludes cyclic constructs of
classes implementing interfaces nested in the respective other class.

Flattening the type hierarchy and placing keys not in but beside their re-
peated element classes would resolve this problem, but lead to name collisions
instead. For this binding, collision avoidance and shorter class names are deemed
more important then the overhead resulting from this explicit key selection.
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3.5 Isomorphic Name Selectors

With the binding described so far, users can select elements only with knowl-
edge of their key. These keys are managed internally and not allowed to carry
information other than references to other elements. This strict separation of
keys from attributes, even if usable to identify an object, allows the attribute
values to be changed without transitive effects on referencing objects.

Still, if a repeated element can be distinguished by a value other than the
key, it should be possible to retrieve the element using this value. Considering
STATS, a typical application would be selection of an account by its username
or student id. For this purpose, the notion of isomorphic names is introduced.
An child node is considered to be an isomorphic name iff

• it is a string attribute AND

• it is annotated with a uniqueness constraint,
i.e., count(., p) = 1, where p is a path pointing to a multiset of nodes
of the same type as the current node

Such an attribute is unique for one or several repeated elements. Conse-
quently, a bijective mapping between these attributes and the key values of the
repeated elements exists and the name can be used to select the key (or directly
the element).

element accounts {
element account ∗ {

attribute username {
s t r i n g [ count ( . , . . accounts / account /username ) = 1 ]

}
}

}

In this simple, yet common, example the repeated account element contains
an attribute username, which is unique over all account elements and therefore
an isomorphic name to the account key. The binding should allow the user to se-
lect accounts with a username from the accounts element. This is a frequently
occurring pattern and the XCend schema syntax provides an abbreviated nota-
tion (element account * username).

Yet there may be cases, where names are not just locally unique, i.e., stronger
than the key of a single repeated element.

element l i b r a r y {
element book ∗ {

element copy ∗ {
element uid ? {

attribute id { s t r i n g
[ count ( . , . . l i b r a r y /book/copy/ uid / id = 1 ]

}
}

}
}

}

Consider the above example of a library comprising several copies of possibly
the same book. Still, each copy can be uniquely identified over all books and
copies. The embedded constraint states this by restricting the count of a given
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id occurring within the complete library to one. If the id is known, it is not
necessary to know the book in order to select the referenced copy. In fact the
opposite is the case: the copy with a specific id might not be selectable from the
currently selected book object, since it is a copy of another book. Selection of
elements using isomorphic names should be restricted to the outermost element,
for which the name still is unique, in this case the library class.

Furthermore, it is unclear which element should be selected with this name.
It seems natural to select an element which could not be addressed unambigu-
ously without such a name selector. This would mean selection of repeated
elements only, in this case, not the optional uid, but the wrapping copy. Since
the id is unique for two repeated elements, copy and book, a selector for both
can be provided. This also implies, that the unique name does not have to be
located directly in a repeated element. In this case, the id is surrounded by the
optional uid element, which has no influence on generated name selectors.

These name selectors are realized by additional methods in the class gen-
erated for the outermost repeated element, for which the name still is unique.
Similar to selection using the key, execution of this method may fail if the pro-
vided name was not used.

public stat ic class l i b r a r y {
. . .
public Book bookById ( St r ing id ) throws NoSuchElementException {

. . . }
public boolean hasBookById ( St r ing id ) { . . . }

public Copy copyById ( St r ing id ) throws NoSuchElementException {
. . . }

public boolean hasCopyById ( St r ing id ) { . . . }

. . .
}

The above code fragment shows which methods will be generated for the
given specifications. In addition to the selection method, a ”has-method” is
generated as well, which checks if an element with the given name exists. This
is identical to the methods generated for repeated patterns.

3.6 Collection Interface

The theory behind XCend is not based on single elements but instead considers
multisets of elements. Read expressions may yield multiple elements, even the
same element multiple times, or none at all. In the same way, scal expressions
do yield multiset, if the right side is a collection. The vplus, even in its restricted
form, still yields a multiset of integers.

XCend is based around the concept of paths, which can yield multisets of
values. To support element access for the binding in a similar way, collections are
introduced. The collections provided by Java are not sufficient for this purpose,
since all selection steps performed on single elements should also be performable
on a collection of said elements. Consequently an individual collection class is
introduced for each element, which provides the same selection methods as the
element class. This also implies collection classes being typed in the same way as
their element classes, i.e., they only contain elements of a single type. Contrary

30



3.6. COLLECTION INTERFACE CHAPTER 3. STRUCTURE

to the theory, this does not pose a problem, since simplification guarantees
all multisets to be homogeneously typed. The collection interface does not
only provide additional functionality and usability, but also simplifies assertion
translation in Chapter 4.

When considering aggregates, multisets indeed make sense as parameters.
Aggregates on single elements on the other hand can be statically simplified.
Instead of realizing aggregates as static functions in a utility class, they are
implemented in abstract collection superclasses. Four of these superclasses are
introduced: a generic superclass and three more specific classes for collections
of type integer, string and key. One of these abstract classes is extended by
each collection class introduced.

While all aggregates would require filtering to a specific type in the theory of
heterogeneous multisets, they can be easier calculated when considering typed
collections. The sum aggregate on non-integer collections is always 0. The
count aggregate always yields 0, if the types are incompatible, tally is either
0 or equal to the size of the collection. VPlus using a non-integer collection
will add 0, since the surrounding sum would filter all non-integer values. A
scalar multiplication using an integer as left parameter and a non-integer set as
right parameter will return the empty set. These occurrences can be statically
replaced. It suffices, to implement aggregates, vplus and scal only for the
integer collection.

A

B

C D

E

Acollect

Bcollect

Ccollect Dcollect

Ecollect

kind
singleton

Figure 3.4: Collection classes generated for a set of singleton classes

The integration of the collection classes within the already generated classes
and interaction between the two is depicted by Figure 3.4. Types B and C
are Kleene types and therefore usually need a key for their respective selector
methods. If the selector method is called without a key (a so-called kind step),
a collection of B or C elements is returned instead. In return, if the collection
contains only a single value, this can be retrieved with the special singleton
method. The method fails if the collection contains no value or more than one.

Since now the generated code contains classes for collections of all classes,
it especially contains one for each generated key class. Instead of using the
collections provided by Java as return value for the keys method, these key
collections can be used instead. One advantage over using classes of the Java
API is access to aggregate methods. While most do not make a lot of sense on
key collections, it makes translation of assertions easier (described in detail in
Chapter 4) and maintains consistent usage of generated classes.

The advantage of using key collections over Java collections is more evident
when considering the usage of key interfaces and key implementation types
described in Section 3.4. The interface type is used for parameters, the imple-
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mentation type for return values. When Java collections are used, the returned
collections cannot be directly input into other methods, since Java collections
are invariant. While this has good reasons, contravariance would be required
to solve this without assigning each value to a new collection. For individual
collection classes, the solution is analog to key classes themselves. An interface
is introduced for each key collection, and all compatible collection interfaces are
implemented. The interface type is used as parameter, the implementation type
as return value. As a result, returned collection classes can directly be input
into selection methods and the compatibility of keys is maintained throughout
collections as well.

As described above, collection classes represent multisets of elements, mean-
ing the same element can be contained multiple times. Due to this, the semantic
of the parent reference is not clear for collection classes. Possible interpretations
would be the multiset consisting of the parent of each element or a set contain-
ing each parent only once. Additionally, the user would expect round-tripping
behavior, i.e., when calling parent first and then the selector method for the
original collection, the user might expect to receive the original collection. Yet
for both translations, simple examples can be constructed contradicting this
behavior. Therefore, no parent reference is given for collection classes.

Filtering The selection methods described so far offer no refined selection of
elements by their properties. The only possibility to select a subset of elements
is to use the key or name for selection. To provide a more powerful method
of selection, a filter method is introduced into the abstract superclass of all
collections. This method returns the collection of only those elements, which
fulfill a certain property. Properties for filtering can be defined by implementing
a filter interface which is taken as parameter for the filter method.

AccountCol l ect ion accounts = s t a t s . accounts ( ) . account ( ) ;
AccountCol l ect ion s tudents = accounts . f i l t e r (new F i l t e r <Account>()

{
public boolean f i l t e r ( Account e ) {

return e . hasStudent ( ) ;
}

}) ;

The example above shows an application of this filtering mechanism. The
collection of all accounts should be reduced to only student accounts, i.e., those
with a student id. A new anonymous subtype of the filter interface is instanti-
ated, which evaluates to true if the given account has a student element. This
filter is applied to all account elements and a new account collection containing
only those, for which the filter holds, is returned.

The overhead necessary for this is enormous in Java, since no high-order
functions are supported. Closures, currently expected in Java 8, might be used
to simplify the filtering mechanism. With closures, the filtering of the above
fragment could be reduced to a line like the following.

AccountCol l ect ion s tudents = accounts . f i l t e r (
{e => e . hasStudent ( ) } ) ;

Note, that this syntax is not necessarily final for Java, as Java 8.0 is still
under development.
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3.7 Marshaling and Unmarshaling

The Java classes generated from this process are capable of storing XML docu-
ments matching the XCend schema. To marshal concrete objects to XML and
vice versa, two new methods are introduced into each element class. Implemen-
tation for both is rather straight-forward. Note, that abstract methods are also
generated into choice supertypes, which allows dynamic binding of these meth-
ods to all subtypes. The visibility of these methods can generally be restricted
to the package and only the binding class should provide public methods for
(un)marshaling complete documents.

XML Java Object

unmarshal

marshal

Figure 3.5: (Un)marshaling of XML documents to Java

Unmarshaling of an XML document not matching the schema naturally leads
to an exception. Elements and attributes in the XCend specification have to
be matched by XML elements and attributes using the same names, nesting
hierarchy, and type restrictions. The value of a key attribute is represented by
an integer. Required nodes have to occur in documents, optional nodes may
be left out. A choice between elements requires exactly one of the specified
elements to occur at the position of the pattern. Repeated elements may occur
multiple times and have an additional attribute key. This attribute is required
and stores the key value, which also is an integer. It can be referenced by the
keys of other repeated elements or key attributes.

element s t a t s {
element account ∗ name {

element student {
attribute id { i n t }

}
| element employee {

attribute id { i n t }
}

}
}

−→

<s t a t s>
<account name=” john ” key=”1”>
<student studentId=”123456”/>

</ account>
<account name=” jane ” key=”2”>
<employee s t a f f I d=”123456”/>

</ account>
</ s t a t s>

Figure 3.6: XCend specification and a matching XML document

The code fragments in Figure 3.6 show an example specification using most
functionality of the XCend schema language, which is matched by the XML
document on the right. Note the additional key attribute in the repeated account
element. A user-specified attribute with this name in a repeated element will
lead to a name collision and is rejected by the generator.

After successfully unmarshaling an XML document, most structural con-
straints are automatically guaranteed by the type system. The last step of the
parse method is checking adherence of the newly constructed object to all other
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constraints, before returning it to the user. So even after successful unmarshal-
ing, the binding might still encounter errors resulting from violated constraints.
The constraint check is an expensive operation (depending on the specified con-
straints), and may not be necessary, if the XML document is already guaranteed
to adhere to constraints, for example, if the document has been generated using
the binding. Constraint check can be switched off using a flag in the unmar-
shaling method.

3.8 Translation Example

This section describes a translation example for a small XCend specification of
accounts, which also can be found in the STAT system, using all functionalities
described so far.

element accounts {
element account ∗ username {

attribute lastName
attribute f i r stName
element student ? {

attribute id {
i n t e g e r [ count ( . , . . accounts / account / student / id ) = 1 ]

}
}

}
}

The fragment above depicts a small XCend schema, which is a fragment of
the STATS schema. The example describes a set of accounts, which all have a
username, last and first name. They may also have a student id, which is stored
in an optional element. The username is declared as unique name for account
elements. A constraint embedded in the id attribute states, that this attribute
is also unique for all accounts.

This is translated into an abstract syntax tree matching the syntax described
in 2.2 and finally the following set of Java classes.

public stat ic class Accounts {

public boolean hasAccount ( Account . KeyIF accountKey ) ;
public AccountCol l ect ion account ( ) ;
public Account account ( Account . KeyIF accountKey ) throws

NoSuchElementException ;
public AccountCol l ect ion account ( Account . KeyCol lect ionIF

accountKeyCol lect ion ) ;
public Account AccountbyUsername ( St r ing username ) throws

NoSuchElementException ;
public Account AccountbyId ( St r ing id ) throws

NoSuchElementException ;

stat ic parse ( XMLReader xmlr , S ta t s s t a t s ) {
. . .
Accounts accounts = new Accounts ( ) ;
Account . parse ( xmlr , accounts ) ;
while ( SchemaValidation . isOpeningTag (FxmlER .

peekNextS ign i f i cantTag ( ) , ” account ” ) ) {
accountSet . add ( Account . parse (FxmlER, accounts ) ) ;
SchemaValidation . checkClosingTag (FxmlER . nextS ign i f i c antTag ( ) ,

” account ” ) ;
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}
. . .

}
unparse ( XMLWriter xmlw ) {

xmlw . wr i teStartElement ( ” accounts ” ) ;
for ( Account account : accountMap ) {

account . unparse ( xmlw ) ;
}
xmlw . writeEndElement ( ) ;

}
check c o n s t r a i n t s ( ) {

for ( Account account : accountMap ) {
account . checkConst ra int s ( ) ;

}
}

public stat ic class Account {

public Key key ( ) ;
public St r ing username ( ) ;
public St r ing lastName ( ) ;
public St r ing f i rstName ( ) ;
public boolean hasStudent ( ) ;
public Student student ( ) throws NoSuchElementException ;

stat ic parse ( XMLReader xmlr , Accounts accounts ) { . . . }
unparse ( XMLWriter wxmlw ) { . . . }
check c o n s t r a i n t s ( ) { . . . }

public stat ic interface KeyIF extends KeyInter face { }
public stat ic class Key extends AbstractKey implements KeyIF {

}

public stat ic class KeyCol lect ionIF { }
public stat ic class KeyCol lect ion extends AbstractKeyCol lect ion

<KeyIF , Key> implements KeyCol lect ionIF { . . . }
public stat ic class AdminCollect ion extends

AbstractValueCol l ec t ion<Admin>{ . . . }
}

public stat ic class AccountCol l ec t ion extends
AbstractValueCol l ec t ion<Account>{

public Account . KeyCol lect ion key ( ) ;
public Account . UsernameCol lect ion username ( ) ;
public Account . LastNameCollect ion lastName ( ) ;
public Account . F i r s tNameCol lect ion f i rstName ( ) ;
public Account . S tudentCo l l e c t i on student ( ) ;

}
}

For readability, the fields and method bodies have been left out in this example
translation. Code for the implementation of the methods is rather intuitive
from the method signatures and the translation description above. For each
child element, a field and access methods are created. Optional and repeated
elements get additional methods. Collection classes generated contain the same
selection methods, although NoSuchElement exceptions and methods checking
existence of elements are removed. For such an access, an empty collection
is returned. Additional library methods are introduced for (un)marshaling,
checking non-structural constraints and selection using isomorphic names.
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Chapter 4

Assertions

Assertions are used to express a non-structural property of an XML document.
Typical examples are the number of repeated elements not exceeding a given
limit or an element with the key defined in a key attribute existing at some
other position in the schema. As described in Section 2.1 and Section 2.2, the
definitions of the schema and its procedures both use assertions. In the schema,
assertions appear embedded in nodes. Such embedded assertions describe non-
structural constraints of the schema, which have to be matched by XML valid
XML documents. In procedures, assertions are used to specify preconditions.
The translation for both occurrences is very similar.

Embedded assertions implicitly define a context of ancestor elements. These
ancestors can directly be accessed using dedicated value and path expressions.
For precondition generation, all embedded assertions are merged to a single
conjunction and this context is removed. Procedure preconditions do not define
such a context. From procedures, only the root is directly reachable. Em-
bedded constraints are implicitly guarded with an existence constraint for the
surrounding node, i.e., they are only checked if the surrounding node occurs in
a document.

Fulfillment of assertions cannot be ensured using only the type system of the
programming language, but requires dynamic checks. These checks are expen-
sive and should not be performed after each access. A valid document cannot
become invalid just by reading data. When modifying the document, however,
constraints have to be checked again. The translation described so far only cov-
ers read access, with the exception of unmarshaling in Section 3.7. There, an
object representing the XML document is instantiated. Since in general it can-
not be guaranteed, that the source document is valid with respect to the schema,
constraints are checked before handing over the newly instantiated object to the
user. If this can be guaranteed beforehand, for example if the XML document
was generated using procedures provided within the binding, the check can be
skipped as well. Structural constraints are automatically checked during parsing
of the XML document. To check non-structural constraints, a special method
checkAssertions is integrated into each generated class. This method also
calls respective methods on child elements.

Manipulations of XML documents or the parsed object respectively do not
require subsequent check of the schema invariant in XCend. This is possible,
since manipulation is restricted through defined procedures, and prior check of
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the precondition generated for each procedure guarantees, that the invariant
will hold after procedure execution.

Embedded assertions can in turn affect the translation of the schema. Ex-
amples of this are the concept of key compatibility described in Section 3.4 or
the notion of isomorphic names in Section 3.5.

4.1 Formulas

Assertions are logical formulas in conjunctive normal form. This section intro-
duces the basic syntax and semantics for these formulas and explains how the
semantic can be mapped to Java.

4.1.1 Ternary Logic

XCend formulas use a ternary logic, also known as kleene logic. The usual
boolean values TRUE and FALSE are augmented with a third value called BOTTOM

(⊥), which represents an unknown state. ⊥ is used, whenever it is undefined,
how the assertion should be evaluated. For example, comparing a single value
with a set of values will result in ⊥.

∧ ∨
T ⊥ F T ⊥ F

T T ⊥ F T T T

⊥ ⊥ ⊥ F T ⊥ ⊥
F F F F T ⊥ F

Table 4.1: Evaluation of conjunction and disjunction under ternary logic

The evaluation of ⊥ in boolean formulas is equivalent to evaluation using
an unknown value, which may be either TRUE or FALSE. When used within
a conjunction, ⊥ is dominant to TRUE but is suppressed by FALSE. For the
disjunction, it is the other way around. The behavior of ⊥ is shown in detail in
Table 4.1.

In Java, this ternary logic is realized with an enum and with instances for
each of the three values. Conjunction and disjunction are defined within the
enum and work as described in Table 4.1.

4.1.2 Conjunctive Normal Form

Assertions are represented in CNF, i.e., each assertion is a conjunction of dis-
junctions of literals (cf. Section 2.2).

For the binding, explicit treatment of ⊥ in disjunctions or conjunctions is
not required. The interesting information is, if an assertion does or does not
hold. If a literal evaluates to ⊥, evaluation failed, which can only be result of
an error raised by violation of an assumption, e.g., equality comparison with
a non-singleton value or incompatible types. A false value on the other hand,
marks a literal that could be evaluated, but yielded false. Both values imply,
that the literal did not evaluate to true, and consequently, the invariant (or
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precondition) does not hold. Bottom values in conjunctions and disjunctions
can be interpreted in the same way as false values.

The evaluation of CNF formulas is done lazily. If one of the disjunctions
in the conjunction does not hold, i.e., does not evaluate to TRUE, the complete
assertion immediately fails. Error messages for the user can be augmented with
the assertion or disjunction that failed, as well as the node it is embedded in.
For the disjunction, it is the opposite. It suffices for a single literal to evaluate
to TRUE.

The lazy evaluation of conjunctions is realized with the use of exceptions.
If a single conjunct evaluates to FALSE or ⊥, the complete assertion check fails
immediately. Lazy evaluation of disjunctions is bit more intricate, since evalu-
ation to TRUE does not lead to an exception. Instead, disjunctions are wrapped
inside a do/while loop and occurrence of a true value breaks this loop. The
loop is only used to implicitly create a break label and the condition is set to
false.

Some literals can be statically evaluated by exploiting schema information
which is not available for XCend. This primarily concerns the pattern tally

(parameter, type) = 1, which is introduced by the simplifier to reduce other
parts of the conjunction but cannot be removed afterwards. Since the type of
a procedure parameter is stored in the schema, such literals can be statically
evaluated and be used to evaluate surrounding disjunctions or even the com-
plete conjunction. A disjunction statically evaluating to true can be left out
completely, since it will not influence the overall result. At the same time, a
disjunction statically evaluating to false or ⊥ marks a specification error, since
the overall conjunction can never be fulfilled. Single disjuncts evaluating to false
can be dropped. The case of a complete disjunction statically evaluating to false
is already caught during the attempt to statically evaluate the surrounding con-
junction.

4.1.3 Free Variables

Free variables are implicitly universally-quantified over the domain of all keys.
This means, assertions containing free variables are checked for each possible
assignment of the variables, which results in an conjunction.

There are only finitely different assignments, for which the results can be
distinguished. Remaining assignments can be tested symbolically with a single
execution subsuming all equivalent assignments.

For free variables occurring in aggregates, a scalar multiplications or a vplus,
the actual assignment of the variable does not matter. The sum of a free variable
is always 0, the size of a free variable is always 1. Since free variables are
always of type key, the tally aggregate can also be statically evaluated to 0
or 1 depending on the type parameter. A scalar expression with a key type
parameter will evaluate to either ⊥ or the empty set. Non-integer collections
(or values) in vplus can be ignored due to the surrounding sum aggregate.

This leaves three positions where the assignment of a free variable actually
matters: in a path step of a path expression, in a count aggregate, or directly
in an equal relation.

To reduce the infinite set of possible keys for each variable, all valid and only
some invalid keys are considered. A key a is considered valid for a free variable
x iff one of the following statements holds with respect to the current assertion:
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• ∃ path p with a step using x as key and size(p[x→a]) > 0 OR

• ∃ count(x,s) and count(a,s) > 0 (i.e., a ∈ s) OR

• ∃ count(b,x) and count(b,a) > 0 (i.e., b = a)

While using different valid keys inside path expressions might yield different
values, all invalid keys will yield the empty set. For count expressions, invalid
key values will always yield 0. Consequently, only equality can be used to
distinguish invalid keys, i.e., all invalid, equal key pairs and all invalid, but
unequal key pairs are indistinguishable. For a single free variable, this reduces
the values to be checked to all valid keys and a single invalid key, unequal to
all valid ones. To reduce the number of checked assignments further, only the
keys valid for the repeated elements, where free variables are used as key, are
checked. So first all these repeated elements have to be determined. The valid
key sets of these elements are then merged and some invalid keys are added for
the symbolic check of all remaining invalid keys, for example the largest key
occurring in the merged key plus one.

For more than a single free variable, the equality between invalid keys be-
comes important. A single invalid key is no longer sufficient, since it would
always be the same key for all free variables, and the equivalence class of in-
valid, unequal keys would no longer be tested. To guarantee check of invalid
but unequal keys for each free variable, a new invalid key, unequal to the invalid
keys introduced for other free variables, has to be introduced. The invalid keys
of all free variables handled before are also included, so equal invalid keys oc-
cur automatically. The new key can be easily constructed by using a different
number than before. Consequently, the total number of invalid keys introduced
matches the number of free variables.

=
6=

valid keys used for iteration

x

y

Figure 4.1: Assignments of free variables which are tested

Figure 4.1 shows the value space for an iteration with two free variables x
and y. All distinguishable combinations of key assignments in a scenario of two
variables are listed in Table 4.2, together with the steps required for key set
generation. To test combinations of valid keys, it is sufficient to let each free
variable iterate only over the keys valid for itself. If a combination between valid
and invalid keys should be considered, this independent iteration is insufficient.
To test each possible assignment of the same key to all free variables that is
valid for one and invalid for another free variable, the valid key sets of all free
variables have to be merged. Note that such a case does not necessarily occur, if
the sets of valid keys are equal for all variables. For these cases a single invalid
key has to be added in order to test the combination of a valid and an unequal
invalid key. The same invalid key can be used to test the assignment of the same
invalid key to all free variables. To test assignment of unequal invalid keys, n
invalid keys are necessary, where n is the amount of free variables occurring
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in the assertion. These assignments guarantee that all combinations with a
distinguishable result are tested.

[x→a], [y→b] a = b a 6= b

a and b valid independent iteration independent iteration

one valid, one invalid merged key set single invalid key

a and b invalid single invalid key n invalid keys

Table 4.2: Distinguishable combinations of keys for two free variables

In Java, this check is realized with loops. Each iteration represents another
assignment of the free variables. Nesting of loops generated from multiple free
variables guarantees, that every combination of values is tested. The value sets
over which the iteration is performed are constructed as described above. All
key sets where the free variable is used as a key are merged and invalid keys are
added according to nesting depth of the free variable.

Since not all literals contain free variables, iteration over the complete con-
junction would lead to unnecessary computation overhead. Instead, conjuncts
without free variables are evaluated before free variable iteration, and the iter-
ation is only performed for those conjuncts actually containing free variables.
This could also be done in a more intricate fashion distinguishing not only be-
tween literals with and without free variables but between literals containing
specific free variables. This could, for example, also move literals containing
only the free variable x out of the assignment loop of variable y. The current
prototype does not make this distinction.

4.1.4 Literals

Literals mark single logical values and compare two value expressions, which
are evaluated with respect to an XML document. A Literal is composed of a
relation, which is either the equality or less than relation, and a boolean value,
stating if the relation should evaluate to true or false. Both together can be
interpreted as =, 6=, < or ≥. The left and right parameters of the relation
have to represent a single value. In case of Equal all value types are allowed,
in case of Less only integer values are permitted. All types can be determined
statically, consequently the translation immediately fails if unpermitted types
are encountered for the given relation, or the types used within the relation do
not match.

Cardinality of the multisets cannot be determined statically, but only single
values can be compared under the relations. The binding distinguishes statically
between single values and collections modeling multisets. While single values
simply can be input into literal comparisons, collections have to be dynamically
cast to a single value. If such a cast fails due to the collection containing more
than a single value or being empty, the literal evaluates to ⊥. This can only be
the case for scal, vplus or read expressions, since all other types are statically
guaranteed to always yield single values.
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4.2 Terms

Terms are the basic building blocks for formulas and procedures. They can be
evaluated in the context to a specific XML document. Path expressions point
to a multiset of nodes, possibly the empty set, if no elements exist at the path
in the provided document. Value expressions can be evaluated to a (multiset
of) value(s) of one of the four basic types of XCend.

4.2.1 Path Expressions

Path expressions point to a multiset of XCend nodes. Expressions pointing to
a elements are called element paths, path expressions pointing to a attributes
are attribute paths. The intuitive translation of path expressions is access of an
object of a class generated for the node the expression points to. While this
is indeed the way element paths are translated, such a class is not generated
for attributes and the node and value are merged on the Java side, as stated in
Section 3.2. This requires path expressions to be treated differently according
to their context.

The only possible occurrences of path expressions are inside other path ex-
pressions, inside read expressions, or inside the body of a procedure. Path
expressions nested inside other path expressions represent the parent fragment
of the complete path. The current path expressions marks an additional step on
the parent path. This parent path expression is not allowed to be an attribute
path, since attributes mark leaves of the XML tree, and no further navigation
is possible.

Other occurrences of path expressions need to be treated differently accord-
ing to the type of nodes selected with the path expression. The distinction of
path expressions inside read expressions are described in Section 4.2.2. Path
expressions in procedures are covered in detail in Chapter 5.

Since the generator also has schema information, the existence of each path
(except existence of specific key values) can be checked before introducing invalid
access code in the generated binding. If a path does not coincide with a node in
the schema, the path is considered to be invalid and the schema is rejected by
the generator informing the user about the invalid path used. Path expressions
are considered to always point to a multiset for the binding. This implies,
that the path expression always returns a collection of elements or values. The
components of the path expression can be translated as follows.

Dot, Parent, Root Path expressions are defined recursively and start with
one out of three possible path expressions. Dot and parent mark paths relative
to the context, the surrounding assertion is embedded in, and do not occur in
the theory. Instead, those paths are replaced with absolute paths, that have
quantified variables for each selection step of a repeated element. Since the
binding generator has the context information necessary to evaluate relative
paths, they are retained resulting in simpler and more efficient code.

The dot expression marks a reference to the current node, i.e. the node the
assertion is embedded in. The translation of this expression is simply a reference
to the current object, which is denoted by the keyword this in Java. The par-
ent expression points to the first ancestor node with the name specified within
the parent. Usage an empty string as name marks a reference to the actual
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parent. This shows the requirement of the parent reference in element classes,
which is set at object initialization. The necessary number of parent steps to be
executed can be statically determined. If no ancestor with the specified name
exists, the assertion and therefore the complete schema is rejected. The root
expression points to an instance of the root class of the schema. It would be
possible to store the root in a field within each class as well, but if considering
the already introduced parent field this additional namespace pollution can be
avoided. The number of parent steps required to reach the root node can again
be statically calculated as well. This solution favors reduced memory consump-
tion over runtime efficiency. In procedures, the class is an explicit parameter.
Root expressions there are translated as reference to this parameter.

// con tex t o f the path expre s s i ons : / s t a t s /exams/exam/ ta s k s / ta sk
// re f e r ence to current node ( . )
this ;
// re f e r ence to exam ances tor ( . . exam)
this . parent . parent ;
// re f e r ence to root s t a t s element (/)
this . parent . parent . parent . parent ;

Note, that the root expression does not reference an instance of the root
class, but the document root. These two elements are merged in the binding,
since there exists an isomorphism between the two and the only step possible on
the document root is selecting an instance of the root class, i.e., / has the same
semantic as /stats in the STATS binding. All value expressions calculated
on either an instance of the root class or the document root can be statically
evaluated. The ”root step” is still required for selection of child elements. Path
expressions are checked for this step before translation.

Attributes are not translated to individual classes (cf. Chapter 3). Accord-
ingly, the this reference does not point to the attribute, but an instance of the
parent element class. Dot references embedded in attributes, require an explicit
access of the field modeling the attribute in Java. For an ancestor reference,
the number of necessary parent steps is reduced by one, i.e., the ancestor is
referenced from the parent of the attribute.

// con tex t o f the path expre s s i ons : / s t a t s /exams/exam/date
// re f e r ence to current node ( . )
this . date ;
// re f e r ence to exam ances tor ( . . exam)
this ;
// re f e r ence to root s t a t s element (/)
this . parent . parent ;

Since a path expression is considered to always yield a collection, the node
resulting from a root, dot or parent expression is explicitly cast to a collection.
Subsequent steps of the path expression cannot reduce this collection back to a
single value, resulting in the complete path expression to yield a collection.

Kind The kind step selects all child nodes with the identifier given as param-
eter. Due to introduction of the collection interface, this simply translates as
a call of a selector method, which exists in both, the single class as well as the
collection class generated for the parent of the kind step. This underlines the
importance of the collection api for internal use, since without its existence the
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iteration over all elements would have to be generated within code evaluating
the path expression.

Path Path steps are more selective than kind steps and also use a set of key
values for selection. For non-repeated elements only the empty key is valid,
which is equivalent to the usage of a kind step for the binding. Such steps are
translated in the same way as kind steps. Path steps over repeated elements may
use other key values. Selector methods taking a single key or a collection of keys
as input are generated for those nodes (cf. Section 3.2). The path expression
is translated to a call to one of these methods (bound statically, depending on
the type of the key expression), using the value expression given as key set as
parameter. If the contained value expression does not yield a key type, the
schema is rejected.

For paths occurring in embedded constraints, the collection returned by the
keys value expression is guaranteed to be usable as input for the generated
selector method, since key compatibility has been defined exactly that way (cf.
Section 3.4 and 3.6). Paths occurring in procedures are checked beforehand for
incompatible key values. These cases raise an exception (see Chapter 5).

4.2.2 Value Expressions

The type of a value collection can always be statically determined. Also, it
can be statically determined if a value expression will yield a single value or a
collection of values, even though the number of elements inside the collection is
only known at runtime. Single values and collections are wrapped or unwrapped,
if required by the context. These casts may dynamically fail, resulting in the
complete literal evaluating to ⊥. In case of unexpected types, the schema is
rejected.

Constants and Variables Constants can simply be translated as the con-
tained value. For variables, the surrounding code described in Section 4.1.3
guarantees, that a variable with this name has been declared and assigned be-
forehand. So the variable name can be used here.

Key read expressions These expressions do not occur in the theory but only
as input for the binding generator and only in constraints embedded in nodes.
They give access to a key used to identify a repeated ancestor element of the
node, the expression is embedded in. As with parent and root references, the
number of parent steps necessary to reach the specified ancestor node can be
statically determined. Translation fails if either a parent with the given name
does not exist or the addressed element is not repeated, i.e., always uses the
empty key.

In the binding, such an expression is translated as access to the explicit key
attribute of the respective ancestor object.

Read Expressions Read expressions access information stored within a given
XML document using a path expression. XCend usually requires an explicit read
expression to select the value stored for a given path expression.
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In the binding, access to an attribute path automatically reads the contained
value (cf. 4.2.1). Since it can be statically determined, if a path points to an
attribute or an element, these cases can be distinguished here.

Access to an attribute path does not require additional action. The result
from the path access already returns the stored values. A read expression on
an element path would always return a collection of unit values. Such a collec-
tion is only meaningful as input for a size aggregate. Other combinations are
rejected by the binding. Since the size can be directly calculated on the element
collection, an explicit read is not required.

Consequently, read expressions are dropped completely and are only used to
wrap path expressions in the AST.

Scal The scalar multiplication requires the left parameter to be a single inte-
ger value. In theory, the right side can be a single value or a multiset, but for
the binding, it has to be a collection. Both sides are cast if necessary, resulting
in scal dynamically evaluating to ⊥ if such a cast fails. Since multisets are
homogeneously typed in the binding, the scalar multiplication on non-integer
values can be statically replaced with an empty integer multiset. Consequently,
the right parameter is guaranteed to be an integer collection and it suffices to
supplement the integer collection with a scal method, which handles multi-
plication with a single integer value and yields the multiplied collection. This
method is called on the right side with the left side as parameter. Scalar multi-
plications are considered to always return an integer collection in this binding,
though it might only hold a single or even no value, depending on the values
contained in the right parameter.

A scalar multiplication using a non-integer value on the left side is statically
evaluated to ⊥. Note, that the XCend theory uses a scalar multiplication of the
null key and 0 to represent ⊥ itself.

VPlus According to simplification, vplus is restricted to only appear inside a
sum aggregate (cf. Section 2.2). Non-integer values occurring in the parameters
of vplus are filtered by this surrounding aggregate.

Since collections are homogeneously typed, a vplus operation using a non-
integer collection as parameter is equivalent to adding 0 to the second parameter.
Consequently, such a vplus can be seen as a specification error.

Similar to the scal expression, augmenting the integer collection with a
method which adds either a single integer value or another integer collection, is
sufficient for realizing vplus. This method is then called using the parameters
of vplus as input. According to these considerations, vplus always returns an
integer collection.

Aggregates Aggregates are defined in collection classes as well. However,
methods for aggregates have to be added to the more general value collection,
since aggregates can be used for all types of collections. Aggregates always
return single integer values. The implementation of aggregates is done according
to their definition in Section 2.2. The tally aggregate can be left out in the
binding, since collections are always homogeneously typed and, tally can be
statically replaced either with size, if the passed type parameter is equal to the
type of the collection, or 0 otherwise.
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4.3 Translation Example

In this section, the translation is explained with a small code example taken
from STATS.

element grades {
element grade ∗ id {

attribute value { i n t e g e r }
attribute minPoints { i n t e g e r }

} [ ! exists . / grade [ x ]
| | ! exists . / grade [ y ]
| | {x != y} −> . / grade [ x ] / va lue != . / grade [ y ] / va lue ]

}

This is the schema definition in XCend. The example consists of a grades

element which contains several grade elements. These grades have a value and
the minimal number of points necessary to attain the grade.

The only assertion for this small example is embedded in the grades element.
It states, that for all keys x and y either there is no grade with that key, or, if
x is unequal to y, the value of the grade with key x is also unequal to the value
of the grade with key y. So basically, there exists an injective function from
existing grade keys to grade values.

For the described abstract syntax and the XCend theory, existence con-
straints are translated into size constraints on the described path. Existence
constraints are translated into a size greater than one, non-existence constraints
in a size equal to one respectively.

Other parts of this example can be translated straight forward.

// se tup key s e t f o r f r e e v a r i a b l e i t e r a t i o n
AbstractKeyCol lect ion<KeyInter face , AbstractKey> keySet = keySet (

this . parent . parent . parent . s i n g l e t o n ( ) . exams ( ) . exam ( ) . grades ( ) .
grade ( ) . key ( ) ) ;

// i t e r a t e over f r e e v a r i a b l e s
for ( KeyInter face y : keySet . keyUnion (new AbstractKeyCol lect ion<

KeyInter face , AbstractKey>(new HashMultiset<KeyInter face >(new
AbstractKey ( keySet . l a rges tKey ( ) . add ( B ig Intege r . valueOf (1 ) ) ) {}) )
) ) {

for ( KeyInter face x : keySet . keyUnion (new AbstractKeyCol lect ion<
KeyInter face , AbstractKey>(new HashMultiset<KeyInter face >(new

AbstractKey ( keySet . l a rges tKey ( ) . add ( B ig Intege r . valueOf (1 ) ) )
{}) ) ) . keyUnion (new AbstractKeyCol lect ion<KeyInter face ,
AbstractKey>(new HashMultiset<KeyInter face >(new AbstractKey (
keySet . l a rges tKey ( ) . add ( B ig Intege r . valueOf (2 ) ) ) {}) ) ) ) {

// check cons t r a in t : { ex ./ grade [ $x ] , ex ./ grade [ $y ] , ./ grade [
$x ]/ va lue [ ] = ./ grade [ $y ]/ va lue [ ] } $x = $y

do {
// eva lua t e s i n g l e l i t e r a l : 0 >= s i z e ( . / grade [ $x ] )
i f ( de . xcend . u t i l . Comparator . compare (GEQ, Big Intege r . valueOf

(0 ) , B ig In tege r . valueOf ( this . s i n g l e t o n ( ) . grade ( new Stat s
. Exams .Exam. Grades . Grade . Key( x . keyValue ( ) ) ) . s i z e ( ) ) ) ==
Logica lValue .TRUE) break ;

// eva lua t e s i n g l e l i t e r a l : 0 >= s i z e ( . / grade [ $y ] )
i f ( de . xcend . u t i l . Comparator . compare (GEQ, Big Intege r . valueOf

(0 ) , B ig In tege r . valueOf ( this . s i n g l e t o n ( ) . grade ( new Stat s
. Exams .Exam. Grades . Grade . Key( y . keyValue ( ) ) ) . s i z e ( ) ) ) ==
Logica lValue .TRUE) break ;

// eva lua t e s i n g l e l i t e r a l : $x = $y

45



4.3. TRANSLATION EXAMPLE CHAPTER 4. ASSERTIONS

i f ( de . xcend . u t i l . Comparator . compare (EQ, x , y ) == Logica lValue
.TRUE) break ;

// eva lua t e s i n g l e l i t e r a l : ./ grade [ $x ]/ va lue [ ] # ./ grade [ $y
]/ va lue [ ]

try {
i f ( de . xcend . u t i l . Comparator . compare (NEQ, this . s i n g l e t o n ( ) .

grade ( new Stat s . Exams .Exam. Grades . Grade . Key( x . keyValue
( ) ) ) . va lue ( ) . s i n g l e t o n ( ) , this . s i n g l e t o n ( ) . grade ( new
Stat s . Exams .Exam. Grades . Grade . Key( y . keyValue ( ) ) ) . va lue
( ) . s i n g l e t o n ( ) ) == Logica lValue .TRUE) break ;

} catch ( NoSingletonExcept ion e ) { }

// i f t h i s po in t i s reached , no d i s j un c t eva lua t ed to t rue
throw new Const ra in tVio la t i onExcept ion ( ”{ex . / grade [ $x ] , ex

. / grade [ $y ] , . / grade [ $x ] / va lue [ ] = . / grade [ $y ] / va lue [ ] }
$x = $y” , ”/ s t a t s /exams/exam [ ” + this . parent . key + ” ] /
grades ” ) ;

} while ( fa l se ) ;
}

}

Since the complete generated Java code is rather large, even for this small
example, only the code checking the assertion is provided here. Note first, that
for both free variables x and y a loop is created. Conjuncts containing free
variables are evaluated inside this loop, which guarantees, that a value will be
assigned to all free variables in the literal. These loops assign each valid key as
well as some keys invalid for the free variables as stated in Section 4.1.3. The
free variables are only used as grade keys in this example, so no additional key
sets are merged. The largestKey method returns the largest key considering
all keys occurring within the the given key collection. From this largest key,
invalid keys for the given key set can be calculated. For the first free variable,
only one invalid key is added, for the second free variable two invalid keys are
added.

In the body of the loops, each Literal of the disjunction is evaluated inside
another loop body. If a TRUE value occurs, this loop is broken. If no such value
occurs, i.e., no disjunct evaluated to TRUE, and exception is thrown. Such a
constraint violation represents a runtime error and therefore is unchecked in the
binding.
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Chapter 5

Procedures

The preceding chapters describe read access to the generated binding. Manip-
ulation of documents is performed by user-specified procedures. This chapter
covers, how these procedures can be realized in Java, so that unmarshaled ob-
jects can be manipulated.

The specification of a procedure (see Section 2.2) contains not only the mod-
ifying code and parameters, but also a precondition, that must hold before
executing the procedure. If the precondition and the schema invariant hold be-
fore executing the procedure, it is guaranteed, that the schema invariant also
holds after execution of the procedure. The precondition itself is an assertion as
described in Chapter 4, but can also contain program variables, covered in Sec-
tion 5.1. Section 5.2 points out other differences between embedded constraints
and preconditions of procedures. The translation of the procedure body is ex-
plained in Section 5.3.

Procedures are not embedded in nodes like assertions, but in the document
root and therefore work on an implicit document. The object-oriented approach
would be generation of these procedures into the root class. Rather than follow-
ing that approach, the root parameter as made explicit and a static procedure is
generated in the binding class. In addition, procedures are bound in all classes
where additional parameters can be derived from the context (see Section 5.4).
A second heuristic, which derives more reduced signatures for procedures intro-
ducing new elements, and thereby removes the necessity to explicitly create new
keys for these elements, is described in Section 5.5.

Allowing modification of documents spawns concerns about concurrent doc-
ument access. These concerns are discussed in Section 5.6.

5.1 Program Variables

There are two very similar types of program variables: parameters and local
variables. The only difference between the two is the way they are declared.
Parameters are declared within the signature of the procedure, local variables
are not explicitly declared. While parameters are augmented with type infor-
mation in the abstract syntax, the type information of local variables is not
explicitly stored in the AST, since this would require either annotation of the
type at each assignment or a new statement for declaration of local variables.
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Instead, type information for local variables has to be deduced from their re-
spective applications. Type information of parameters could be derived from
their applications as well instead of explicit type annotation at the parameter
declaration. This is not done in the prototype for the sake of simplicity.

In the XCend theory variables are not typed at all. A variable identifier can
be evaluated as a string in one application but as an integer in another. Similar
to path expressions, program variables are designed as a mapping from variable
identifiers to values. A variable not occurring in the map is interpreted as a
unit value. If an assignment takes place in the procedure body, the mapping is
updated accordingly.

Java can reflect this behavior using a map and a value supertype. However,
these ambiguously typed variables can always be replaced with two uniquely
typed variables, and allowing heterogeneously typed variables does not add
functionality. So variables are considered to be uniquely typed. The types
of parameters can be directly derived from their declaration. For local vari-
ables, the type is derived from the first occurrence of the variable, i.e., the first
assignment. This allows translation of XCend variables as local variables of
Java procedures. Using such a variable before it has been assigned marks a
specification error.

Again, the typing of keys proves to be a more complex problem. First of all,
the type of a key parameter cannot be determined from the parameter definition
alone. This definition only states, that the parameter is indeed a key parameter,
but not which specific key. Like with local variables, this information has to be
deduced from applications of the variable. If no application exists, the parameter
is not used and could also be omitted. For these cases a generic key interface is
used, which basically allows all possible key types to be entered as parameter.
Note that this doe not apply to local variables of type key, since the declaration
of such a variable implicitly provides information about the specific key type
with the value assigned to the variable.

On a further note, key compatibility as described in Section 3.4 does not
consider procedures. Neither assignment of keys nor usage of keys in the pre-
condition has influence on the type hierarchy of keys. The XCend theory, using
untyped keys, naturally has no problems with any assignments or usage of keys
within procedures, even if incompatible. If such an assignment occurs or a
key is used for selection of another repeated element, compatibility is indeed
suggested. Still, such a compatibility should be specified in the schema, not
inside procedures. Key assignments and key usage in procedures in general
is statically typechecked using the key compatibility as defined by embedded
constraints, rather than being extended by procedure specifications.

If the key types are compatible, the value is cast internally. This would be
unnecessary considering only compatible keys as defined in Section 3.4, but free
variables are not typed in the prototype, i.e., generic key interfaces, and require
such an explicit cast.

All parameters are checked to be not null at the beginning of each procedure.
This is necessary, since Java types are nullable but XCend values are not. The
assignment of a null value to, for example, an integer type parameter marks
an error. To prevent access to undeclared local variables, all local variables are
declared and instantiated with null after this parameter check. A sanity check
performed before procedure generation guarantees, that local variables are only
used after ”proper” initialization with a value for the same reason.
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5.2 Preconditions and Embedded Constraints

Though procedure preconditions are similar to contraints embedded in the struc-
tural definition, some differences exist. As mentioned above, preconditions may
contain program variables, which cannot be used within schema assertions. On
the other hand, free variables and path expressions depending on the context of
a node are not allowed within procedures.

Free Variables In the procedure body and user-specified preconditions, usage
of free variables is forbidden. However, since the actually checked precondition
is generated from the schema invariant, which might contain free variables itself,
free variables can still occur in preconditions. The translation of free variables in
procedure preconditions is identical to the translation described in Section 4.1.3.

Path expressions In opposite to schema constraints, procedures are not em-
bedded in a node. Therefore, references to the current element or an ancestor
element are meaningless and considered to be invalid in path expressions within
procedures. Only the root reference can be used to start a path expression. This
applies to statements as well as the precondition. Note, that RKey also requires
the context of a node and is not allowed to be used in procedures.

5.3 Statements

The body of a procedure consists of several statements which are successively
executed. Each of these statements can be translated independently.

Insert Insert statements describe the introduction of a new child node. The
node has a name and is added to a context given in form of a path expression.
It also requires a key and a value. While for XCend this is a rather simple
concept, the Java side of things is more complex.

Introduction of a new node generally equals creation of a new object, i.e.,
instantiation of a class. Only classes for those elements provided by the schema
definition have been generated. Insertion of nodes not defined in the schema
marks a specification error.

Even if the node is specified in the schema, a new object is not necessarily
introduced. Not all nodes are represented by objects. Consequently, not all
insert statements should introduce a new object and several cases need to be
distinguished.

The abstract syntax distinguishes elements and attributes. Attributes can
either be required or optional, but they can neither be repeated nor can there
be a choice between several attributes. No classes are generated for attributes,
instead a null value is used to encode a non-existing attribute node. Statements
introducing an attribute do not introduce a new object in Java, but only assign
the attribute value. A state where the attribute is added but not assigned, does
not exist. At first glance this seems to be a problem, but this state can only
be intermediate in XCend, since it would violate structural constraints of the
invariant and a value has to be assigned afterwards within the same procedure.
Such insert statements require the supplemented key to be the null key, since
attributes cannot be repeated.
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Considering insertion of elements, repeated elements have to be treated dif-
ferent from the rest. Here, the newly generated object is not simply assigned to
a field of the parent object, but added to the contained map instead. The type
of the used key has to be compatible to the key expected for such a repeated
element. The default semantics of Java map is replacing an existing value using
the same key. In XCend, such an insert is not allowed. Non-existence of an
object using this key in the provided context is checked before insertion into the
element map. Insertion operations on repeated elements do require a key, but
no value.

Insertions of other elements require the supplemented key to be the null key.
Since elements in the binding are not allowed to contain values, the provided
value has to be a unit constant. Note, that constructors for all element classes
but the root class require a parent reference, i.e., the parent reference is auto-
matically set when creating a new object. The path expression of the insert
statement points to the actual parent object.

Update The update statement in XCend assigns a new value to a node. On
the Java side of the binding, this only makes sense for attribute paths. Other
paths, especially those not defined in the structural definitions of the schema,
are directly rejected by the generator. Also, the type to be assigned has to match
the type of the attribute found under the given path. For key attributes, the
newly assigned key also has to be compatible to the key type of the attribute.

Delete Delete is the opposing operation to insert, thus removing a child node.
In Java, it has the same restrictions and considerations as the insert statement.
Deletion of an attribute or a non-repeated element resets its value to null. Dele-
tion of a repeated element however removes the element from the element map.

As with insert and update statements, the node type referenced in the pro-
vided path expression has to be defined in the schema.

Delete statements recursively delete all descendants of the removed node.
This is trivially achieved in Java. If the removed object is no longer reachable
from the parent object, descendants of the removed object also are not reachable.

The parent reference in the removed object is set to null as well. This
prevents confusion from navigation to the parent of such an object and missing
round-tripping behavior, if the object was locally stored by the user before
deletion.

Conditional The conditional statement (also called if/then/else or branch)
consists of a predicate, provided in form of a literal, and two statement blocks
then and else. The predicate can be translated as stated in Section 4.1.4.
The statements within the then and else branch are placed accordingly in a
generated code evaluating the predicate.

If the predicate can be evaluated statically, only the code for the correspond-
ing branch has to be generated. The user is informed of this with a warning
message.
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Assignment These statements assign a new value to a local variable. In
XCend, all variable identifiers are valid and are initially assigned a unit value.
Also bear in mind that XCend is not typed.

This behavior is less useful for the binding. Variables that have not been
assigned before usage are marked as specification error. The same applies for
variables, which are assigned values of different types, or values of incompatible
key types, over the course of the program. Each used local variable is declared
at the beginning of the procedure (cf. Section 5.1).

These properties guarantee that all program variables are unambiguously
typed and initialized before assertion check. Since this also applies for procedure
parameters, assign statements may also re-assign parameters without problems.
The statement itself is translated as an assignment of the declared local variable
in Java as well.

Note, that the described translation contradicts the usual usage of variables
inside conditional statements, where a value is usually only declared for one
branch. XCend also does not declare scopes for variables. If required, such
behavior can be achieved using several different variable identifiers as well.

5.4 Convenience Methods

Considering the object oriented paradigm, methods should be contained within
objects they are applied to. The introduced procedures are only generated into
the binding class, similar to XCend, but can possibly be bound at many of the
generated classes.

Looking at an example from the stats system, the user might for example
have a specific account object, to which a student id should be assigned. It
would be better to offer this method directly inside the account class, without
necessity to explicitly pass the account key as parameter. This key can then be
derived from the account object on which the method is called.

addStudentId ( ident id , i n t s tudentId ) {
insert student at / s t a t s / accounts / account [ id ]
insert id at / s t a t s / accounts / account [ id ] / student

using s tudentId

The following simplified code fragment depicts how a convenience method
for this procedure is integrated. The convenience method calls the static method
generated in the binding class deriving parameters from the object context if
possible. Such a call removes the necessity to generate the method body multiple
times into the binding, which might be more bloated than in this example due
to complex precondition.

public stat ic class StatsBinding {
public stat ic addStudentId ( Stat s s ta t s , S ta t s . Accounts . Account .

KeyIF id , B ig Intege r s tudentId ) {
s t a t s . accounts . account ( id ) . student . id = studentId ;

}

public stat ic class Stat s {
public stat ic class Accounts {

public stat ic class Account {
Key key ;
Student student ;
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public stat ic interface KeyIF
public stat ic class Key implements KeyIF { . . . }
public stat ic class Student { Big Intege r studentId ; }

public addStudentId ( B ig Intege r s tudentId ) {
StatsBinding . addStudentId ( this . parent . parent , this . key ,

s tudentId ) ;
}

}
}

}
}

To generate these convenience methods, it first has to be determined, which
procedures can be bound to a specific node. This is done by analyzing the paths
occurring within the body of each procedure. Binding is possible, if the currently
analyzed node is described by a subpath within any statement of the procedure.
The first such path of the procedure body is analyzed further. Binding of a
procedure only makes sense, if additional parameters (other than the root)
can be derived from the context of the node compared to the context of the
parent node. This is only the case for repeated elements, where an additional
key parameter, can be derived, i.e., the key of the repeated element itself. In the
example above, no convenience methods are generated for the accounts or stats
class, since no parameters other than the root can be derived from instances of
these classes.

Considering the above account example, only a single parameter, the account
key (and the root, which always can be determined), can be derived using a
student id. It might be possible for several parameters to be derived. Therefore,
the list of derivable parameters is calculated in a subsequent step. This list
contains the root parameter as well as all parameters derivable from the path
fragment pointing to the current node.

deleteGroup ( ident uid , ident id , ident groupId ) {
delete / s t a t s / e x e r c i s e s / e x e r c i s e [ id ] / groups /group [ groupId ]

}

In case of the deleteGroup procedure, both id and groupId can be deter-
mined from the delete statement. The first step determines, that a convenience
method will be added to the exercise and group classes. For the first convenience
method, only the subpath /stats/exercises/exercise[id] is considered, and
therefore only the id parameter will be derived. This makes sense, since the
groupId is unknown for the exercise object. For the group object the groupId

is known and is derived as well. No methods are generated for the exercises
and groups classes, since those nodes do not allow derivation of additional key
parameters compared to their parents.

When considering insertion methods, the introduction of convenience meth-
ods does not always make sense. It is not possible to invoke a method on an
object which will be created with the call. Invariant generation from the XCend
theory guarantees, that methods introducing a node contain a non-existence
check for this node or a parent node in the precondition. This can be exploited
by convenience method generation. Generation of procedures into nodes, for
which such a non-existence constraint occurs in the precondition, is prevented.
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5.5 Insert Procedures

Procedures introducing a new repeated element require prior generation of a
fresh key, which does not violate the implicit local uniqueness constraint for
keys. For such common procedures, it is desirable to hide this step from the
user and automatically create this key within the procedure itself.

// f u l l method c a l l , r e qu i r e s e x p l i c i t key
Task . Key taskKey = exam . ta sk s ( ) . task ( ) . nextKey ( ) ;
exam . createTask ( uid , taskKey , 5 ) ;

// reduced method c a l l , i m p l i c i t l y c r ea t e s new key
exam . createTask ( uid , 5 ) ;

For this purpose, a heuristic is introduced which determines if a key param-
eter represents a new key. This information can be derived from the procedure’s
precondition.

Introduction of a new repeated element requires, that the key of the new
element is not already used as key in the same context the element is introduced
into. The precondition generator adds a non-existence constraint for such insert
statements. Still, the key might be used in another context and mark a reference
to another repeated element. A key parameter only marks a new key, if no
additional constraints of the precondition, which imply usage of the key in
another context, refer to it. This excludes usage of the key parameter in non-
existence constraints as well as tally checks - those do not imply validity of the
key.

The simplifier may introduce non-equality comparisons during case distinc-
tions, which are irrelevant and also skipped for this analysis. They could be
dropped in general, but this is rather a shortcoming of the simplifier and should
be treated there to ensure formal correctness of this simplification step.

If later modification of a newly inserted element is required, or the new
element is to be referenced from another element, the key has to be stored
beforehand. This cannot be done with the new insert procedures, since neither
key nor the new element are returned by the procedure. Since it is possible to
introduce more than a single element, it is generally not possible to avoid this
by returning the inserted element or its key.

Task . Key taskKey = exam . ta sk s ( ) . task ( ) . nextKey ( ) ;
exam . createTask ( uid , taskKey , 5 ) ;
exam . r e s u l t s ( ) . p a r t i c i p a n t ( accKey ) . addResu l t task ( uid , taskKey , 2 ) ;

The above code fragment shows such an example. There is no way to select
the task key in order to add results for a participant if the reduced method call
is used. Isomorphic names mitigate the problem, but the required selection of
the element using the isomorphic name will have a negative influence on runtime
efficiency compared with explicitly storing the new key. These new procedures
do not generally replace all procedures inserting elements, but are provided in
addition.
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5.6 Concurrency

Considering reading access only, conccurrency is not a problem. Many users
may access data at the same time without any conflicts. Concurrent access
becomes a bigger issue considering manipulating procedures.

To prevent write conflicts, all procedures are synchronized over an instance
of the root class. This also applies to convenience methods. The parent reference
is explicitly set to null when a delete statement is executed. This avoids calls of
convenience procedures on a removed object. The root access for synchroniza-
tion fails for these cases throwing a NullPointerException. This exception is
caught and replaced by a more verbose exception.

Group group = ex . groups ( ) . groupById ( ”1” ) ;
group . deleteGroup ( admin ) ;

// The f o l l ow i n g c a l l w i l l f a i l
group . changeAttr ibutes group ( . . . ) ;

The above example shows such a call. The group is stored in a local variable
and then deleted from the parent exercise. A subsequent call of a convenience
method on the removed group will fail due to the parent reference of the group
being null.

While synchronizing procedures prevents write conflicts, concurrent modifi-
cations still lead to problems between write and read access. An element may be
removed during iteration over elements or keys of elements. This can be seen as
less problematic, since values returned from the binding, including collections,
only represent a snapshot of the object state and subsequent modifications have
to be expected. Synchronization of reading access would not solve this problem.
Instead, the user can manually synchronize his multiset selection and iteration,
as outlined below.

synchronized ( s t a t s ) {
for ( Group group : ex . groups ( ) . group ( ) ) {

. . .
}

}
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Case Study

In a small case study, a slightly modified version of STATS was processed by
the binding generator and a data set from the running system was copied and
adjusted in order to match the modifications performed on the schema. The re-
sulting binding file consists of about 17000 lines of Java code, the used data set
contained about 300 accounts, exercise and exam entries, and participation and
result information for all these accounts. Example calls on this system worked
without unexpected exceptional behavior and performance was reasonable con-
sidering size of the binding and data set.

In the following, several example use-cases and their realization using the
binding are described with the intention to demonstrate usability.

Calculating the points achieved in average A typical use case would be
calculation of the points achieved on average in an exam.

Exam exam = s t a t s . exams ( ) . examById ( ”someExam” ) ;
P a r t i c i p a n t C o l l e c t i o n p a r t i c i p a n t s = exam . r e s u l t s ( ) . p a r t i c i p a n t ( ) ;
double a l l P o i n t s = p a r t i c i p a n t s . r e s u l t ( ) . po in t s ( ) . sum ( ) . intValue ( ) ;
double avgPoints = a l l P o i n t s / p a r t i c i p a n t s . s i z e ( ) ;

First, a specific exam is selected by its name. Afterwards, the set of all
participants is selected. The points achieved by all participants in all tasks
are summed up and divided by the number of participants, i.e., the expected
calculation of the average points per participant. Note, how easy this calculation
becomes with usage of the collection interface. The collection interface does
most calculations, sparing the user the necessity of loops. The transformation
into a Java integer value is possible, since the sum and size both will be far
smaller than the maximal value of Java integer type variables. If this is not the
case, the BigInteger class does also provide methods for arithmetic operations
like the division, though the resulting code is a bit less readable.

Contact suitable Student Assistants For the selection of suitable student
assistants, it seems appropriate to choose only those surpassing a given grade
in their final exam. Therefore, we want to retain the email addresses of all
students, which attained a ”good” grade or better. Such an access can be easily
realized using the Stats binding.
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List<Str ing> mai l s = new LinkedList<Str ing >() ;
Exam exam = s t a t s . exams ( ) . examById ( ”someExam” ) ;
P a r t i c i p a n t C o l l e c t i o n p a r t i c i p a n t s = exam . r e s u l t s ( ) . p a r t i c i p a n t ( ) ;
for ( Pa r t i c i pan t p a r t i c i p a n t : p a r t i c i p a n t s ) {

i f ( p a r t i c i p a n t . r e s u l t ( ) . sum ( ) . intValue ( ) >= exam . grades ( ) .
gradeByName ( ”good” ) . minPoints ( ) . intValue ( ) ) {

mai l s . add ( s t a t s . accounts ( ) . account ( p a r t i c i p a n t . key ( ) ) . emai l ( ) ) ;
}

}

The above code fragment does all the required work. First, a Java list for the
emails is created. Next, the required exam object is accessed. Then, iteration
over all participants allows access to the results stored for each participant. Since
results are stored per task, the points for each task are aggregated using the sum
aggregate. The resulting value, the overall points achieved by this participant
in the exam, is compared to the points required for the grade ”good”. Since
both values are far smaller than the maximal value of Java int type variables,
they can be transformed to their int representation for easier comparison. Last,
the corresponding account is selected and the email stored within the list.

This example shows the usefulness of the heuristics introduced in Chapter 3
and the collection interface. Isomorphic name selectors are used to identify
exams and grades without usage of a key. Key compatibility allows usage of
the participant key for selection of an account object. The collection interface
allows selecting all participants, iteration over them and sums up their individ-
ual results. Only necessary key steps, transformation methods on BigInteger

values, and the wrapping of mails into a Java list make the accessing code look
a bit clunky. Usage of BigInteger values is unfortunately necessary to guar-
antee soundness of the XCend theory the precondition generation is based on
and therefore should not be changed. Key steps could be replaced by allowing
the element itself to be used as foreign key for selection of other repeated ele-
ments, but this proved to be more difficult than expected (cf. Section 3.4). The
usage of Java lists in this example can be replaced with the introduced filtering
mechanism.

f ina l Exam exam = s t a t s . exams ( ) . examById ( ”someExam” ) ;
P a r t i c i p a n t C o l l e c t i o n p a r t i c i p a n t s = exam . r e s u l t s ( ) . p a r t i c i p a n t ( ) ;
p a r t i c i p a n t s = p a r t i c i p a n t s . f i l t e r (new F i l t e r <Part i c ipant >() {

public boolean f i l t e r ( Pa r t i c i pan t e ) {
return e . r e s u l t ( ) . po in t s ( ) . sum ( ) . intValue ( ) >= exam . grades ( ) .

gradeByName ( ”good” ) . minPoints ( ) . intValue ( ) ;
}

}) ;
Emai lCo l l e c t i on mai l s = s t a t s . accounts ( ) . account ( p a r t i c i p a n t s . key ( )

) . emai l ( ) ;

This fragment fulfills the same functionality, but uses the internal filtering
mechanism. Instead of explicitly iterating over the participant collection and
storing the mails of those participants who achieved enough points, the all par-
ticipants are directly filtered by their points. The resulting collection contains
only those participants with enough points. The collection of the keys of those
participants can then be used to select a mail collection.

The code fragment can be reduced even more considering closures of Java 8,
which remove necessity for an anonymous inner class.
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f ina l Exam exam = s t a t s . exams ( ) . examById ( ”someExam” ) ;
P a r t i c i p a n t C o l l e c t i o n p a r t i c i p a n t s = exam . r e s u l t s ( ) . p a r t i c i p a n t ( ) ;
p a r t i c i p a n t s = p a r t i c i p a n t s . f i l t e r ({ Par t i c i pan t e =>

e . r e s u l t ( ) . po in t s ( ) . sum ( ) . intValue ( ) >= exam . grades ( ) . gradeByName
( ”good” ) . minPoints ( ) . intValue ( ) ;

}) ;
Emai lCo l l e c t i on mai l s = s t a t s . accounts ( ) . account ( p a r t i c i p a n t s . key ( )

) . emai l ( ) ;

BinPackaging To show a more intricate example of procedure application
and exception handling, the bin example is used.

element bins {
element bin ∗ name {

attribute capac i ty { i n t [ . > 0 ] }
element item ∗ {

attribute weight { i n t [ . > 0 ] }
}
[ . / capac i ty >= sum ( . / item / weight ) ]

}
}

addItem ( key b , key i , i n t w) {
insert item [ i ] at / b ins / bin [ b ]
insert weight at / b ins / bin [ b ] / item [ i ] using w

}

delItem ( key b , key i ) {
delete / b ins / bin [ b ] / item [ i ]

}

The bin example consists of several bins, which in turn contain several items.
Each bin has a maximal capacity and each item has a weight. The sum of
weights of contained items is not allowed to exceed the capacity. The specified
procedures allow adding items to a bin or removing them.

The binpackaging algorithm described in Figure 6.1 is a backtracking algo-
rithm, which allocates items from a source bin to a set of target bins such that
no items remain in the source bin. Since no order is defined on items or bins,
the algorithm is non-deterministic and may yield a different result for each run,
but the result will always adhere to the specified constraints.

If the source bin contains no more elements, the algorithm is not required
to do anything. Otherwise, the algorithm tries to allocate the first item, by
executing the addItem procedure bound in each target bin. If the procedure
throws an exception, the next bin is tested. If it the item was successfully
allocated, it is deleted from the source folder and the next iteration takes place.
If any subsequent allocation step fails, all performed allocations are rolled back
and the item is assigned to the next bin with sufficient capacity instead.

The XML fragments in Figure 6.1 show the result of an example run of the
binpackaging algorithm.
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public stat ic boolean pack ( Bin source , B inCo l l e c t i on t a r g e t s ) {
i f ( ! source . item ( ) . i t e r a t o r ( ) . hasNext ( ) ) return true ;
Item next = source . item ( ) . i t e r a t o r ( ) . next ( ) ;
for ( Bin t a r g e t : t a r g e t s ) {

try { t a r g e t . addItem ( next . key ( ) , next . weight ( ) ) ; }
catch ( AddItemException e ) { continue ; }
source . de l Item ( next . key ( ) ) ;
i f ( pack ( source , t a r g e t s ) ) return true ;
t a r g e t . de l Item ( next . key ( ) ) ;
source . addItem ( next . key ( ) , next . weight ( ) ) ;

}
return fa l se ;

}

<bins>
<bin name=”main” capac i ty=”

1000”>
<item weight=”50”/>
<item weight=”20”/>
<item weight=”20”/>
<item weight=”30”/>
<item weight=”30”/>
<item weight=”50”/>
<item weight=”60”/>
<item weight=”40”/>

</ bin>
<bin name=”1” capac i ty=”100”

/>
<bin name=”2” capac i ty=”100”

/>
<bin name=”3” capac i ty=”100”

/>
</ b ins>

−→

<bins>
<bin name=”main” capac i ty=”

1000”/>
<bin name=”1” capac i ty=”100”

>
<item weight=”50”/>
<item weight=”20”/>
<item weight=”30”/>

</ bin>
<bin name=”2” capac i ty=”100”

>
<item weight=”20”/>
<item weight=”30”/>
<item weight=”50”/>

</ bin>
<bin name=”3” capac i ty=”100”

>
<item weight=”60”/>
<item weight=”40”/>

</ bin>
</ b ins>

Figure 6.1: Example run of the binpackaging algorithm
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Related Work

While most schema languages do not support arithmetic value constraints, all
languages do support some kind of constraints that cannot be guaranteed purely
by the Java type system and have to be checked explicitly.

Cardinality of occurring elements is supported by both DTD and XSD,
though XSD allows more fine-grain definitions [15, 13, 14]. Both support the
ID and IDREF types, which specify a globally unique identifier and a reference
to said identifier. Though global uniqueness and existence of a referenced id
have to hold, the id type itself is nillable, i.e., textttID type attributes may
be left out. Only a single attribute of type ID is allowed to exist within an
element. XSD additionally provides the patterns unique, key, and keyref. A
unique element specifies the contained elements to be unique within a scope.
The key element is similar to unique, but additionally, keys have to exist and
may not be null, a keyref specifies correspondence to the referenced element.
The scope of all three elements is defined using XPATH expressions [12]. These
keys can be compared to the keys in XCend itself. Though scope definition using
XPATH expressions is more flexible than XCend keys alone, such uniqueness
can be emulated using isomorphic names. XSD 1.1 supports assertions using
XPATH 2.0 expressions similar to Schematron and is therefore more powerful
in terms of specification capability then XCend [17, 5, 16]. The question arises,
how these constraints are translated within other data binding tools or if they
are translated at all.

Due to the large number of these tools, only a subset is selected for this
analysis. JAXB and Castor are evaluated for their recognition, and the Liquid
XML Data Binder as representative for commercial tools. None of these tools
supports XSD 1.1 schemata and therefore more complex XPATH assertions.
Also, all these tools allow instantiation of non-schema conform Java objects
and only check adherence to non-structural constraints during (un)marshaling
or when explicitly requested by the user, which is considered to be the main ad-
vantage of the XCend language and binding over other XML schema languages
and binding tools.

Castor Castor is an open source data binding tool for binding XSDs to Java.
It can either generate the classes itself or bind the XSD to already existing Java
classes with help of a binding descriptor defined in XML. The more interesting
one for this thesis is the code generation approach. According to the docu-
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mentation of Castors code generator, the types ID and IDREF are supported,
while the patterns unique, key, and keyref are not [3]. Due to the age of
the document, these statements were tested and verified using the latest stable
build1 provided at the homepage of the project. Castor-generated code indeed
allows unmarshaling of XML documents, which violate constraints defined with
the help of key and reference patterns. Still, Castor can handle cardinality and
the global ID type and references, which are not supported by the type system.
Validation is disabled per default, but Marshaller and Unmarshaller instances
can be configured with several properties allowing validation and skipping of un-
known attributes or elements. Validation of generated objects on the Java side
can also be forced manually. However, it is possible to generate non-schema
conform Java objects and encounter errors during marshaling or user-induced
validation.

As an interesting fact, Castor ignores IDREFs to objects with no set ID. The
marshaled XML is still valid, since such an IDREF attribute is left out completely,
yet it seems questionable if this behavior is user-intended or if a missing ID value
in the referenced object marks a specification error. References to instances of
classes that specify no attribute of type ID at all are marked as errors.

Castor does not provide any functionality comparable with the collection
interface of the XCend binding. It is possible to select a collection of direct
children of an element, but no further navigation can be performed on the
collection itself.

JAXB The Java Architecture for XML Binding (JAXB) is another open
source framework for data binding between Java and XML [11]. It is primarily
designed to handle XSD schemata, but also has experimental support for Relax
NG and DTD schema files. For code generation, the XJC binding compiler
is provided. The generated code does not provide any method of compliance
check to the schema it was generated from. Rather, the schema has to be pro-
vided at runtime again in order to check compliance during (un)parsing of XML
documents. While this validation process can handle reference and uniqueness
constraints, it is purely based on XML validation using the javax.xml.validation
package which is contained since Java 5.0 rather than adding only those checks
not already guaranteed by the type system of Java. Older versions of JAXB
provided a generated validator instead. Still, JAXB does nothing to prevent the
creation of Java objects violating the schema except for the guarantees given by
the type system.

In contrast to Castor, JAXB marks IDREFs to objects with no set ID attribute
as error, even if the IDREF and ID attributes are set to be optional. This behavior
is considered to be more intuitive.

JAXB also provides no functionality comparable to XCend collections. El-
ements with a maxOccurrence greater than one are wrapped in a Java list.
Consequently, all functionality of Java lists is provided, but no navigation on
the collection itself is possible.

While no statements are made about feature support concerning DTD and
Relax NG schemata, and the XJC generator rejected test schemata for un-
known reasons, generated code should suffer from the same problems. Validity
is not guaranteed for runtime objects and validation is only performed during

1The tests were performed with version 1.3.3-rc1.
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(un)parsing if the (Un)Marshaller was explicitly provided with a schema file.
It also is questionable how well the validation API can handle DTD or Relax
NG schema files.

Liquid XML Data Binder The Liquid XML Binder is a commercial XML
binding tool. It supports XSD as well as DTD and is capable of not only binding
these to Java but also to C++, C#, Silverlight, or Visual Basic [6].

The Java code generated also did not prevent creation of non-schema con-
form objects on the Java side and provided no guarantees beside the type system.
In addition validation could not be deactivated, i.e. validation occurs inevitably
during (un)marshaling. Validation is not performed by the generated library
itself but by the used Xerces parser. Neither uniqueness nor key references were
checked correctly. This includes key patterns from XSD as well as the globally
unique types ID and IDREF of both XSD and DTD. Only errors concerning cardi-
nality were detected. Consequently, Liquid XML allows generating and reading
XML documents not matching the source schema the binding was generated
from.

Considering collection functionality, the generated code only offers a count

method, which calculates the number of element occurrences, i.e., can be com-
pared to the XCend size. Other collection functionality is not provided, not
even typesafe for each iteration over an element column, which wraps elements
of the same type that occur more than once.

Overall, the functionality provided compared to non-commercial binding
tools proved rather disappointing. While the GUI for binding generation was
quite understandable and easier to handle then the command line interface of
Castor and XJC, the generated binding did barely contain new features and the
used Xerces parser performed worse in terms of correctness than the validator
generated by Castor or the validation API used by JAXB.

Note, that only the trial version of this tool was tested, though the supported
XML features are supposedly equal to the full version.

Schematron While Schematron in combination with one of the structural
schema languages is superior in design capability, no data binding tools seem
to exist for a combination of the two. Therefore, the language is of little con-
sequence for this work. The same applies to XSD 1.1, which also supports
assertions defined using XPATH 2.0 expressions, but cannot be used as source
language by any binding tool so far.
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Conclusion

Currently, a wide variety of data binding tools is applicable for many different
schema languages, binding XML documents to Java objects. Yet, Java libraries
generated by these tools allow generation of objects not adhering to constraints
of the schema that cannot be expressed by the type system alone. A mismatch
is only detected when marshaling the object or validation is explicitly invoked
by the user.

The proposed binding technique avoids this problem by separating read and
write access, and restricting the latter through definition of procedures. To-
gether with the schema invariant, which combines all constraints defined in a
schema, weakest preconditions can be generated for such procedures. Adherence
to the precondition can be checked before procedure execution and guarantees,
that the manipulation will not violate the defined constraints [9]. The bind-
ing technique is implemented for the XCend technology and schema language.
This allows definition of value and reference-based constraints, which are not
supported by most schema languages [8]. The binding supports all features
described by the XCend schema language.

The schema language is easy to bind by design. As a consequence, concepts
of XCend can easily be related to their translation in the binding. Selection of
elements and values in the binding works quite similar to selection using paths
in XCend. Such paths can be easily mapped to selector chains in Java. The
binding even provides a typesafe multiset selection using generated collection
classes for each node in the schema. This collection interface allows not only
selection of multiple elements but also navigation and even multiset references
with keys. Such a multiset selection method is not provided by other binding
tools like Castor [3], JAXB [11] or the Liquid XML Data Binder [6].

Most name collisions between generated classes are avoided by nesting these
classes in in the same way as their respective elements. Other conflicts are
not treated and rejected in order to preserve intuitive understandability of the
connection between generated binding, the XCend specification, and matching
XML documents.

Several heuristics have been introduced to increase typesafety and usability
of the binding as well as performance of constraint checks.

Keys in the XCend binding are statically typed but retain intended inter-
changeability using the concept of key compatibility. Keys can be interchanged
if such compatibility is expressed by the specification, but accidental misuse at
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incompatible positions is prevented. Key management is handled by the system
itself. Users are not required to generate unique keys and can obtain fresh keys
from the system. Procedures inserting new elements do not even require an
explicit key parameter, but introduce a new key automatically.

Isomorphic names are an extension of the key concept. They mark attributes,
that are unique considering a scope specified with XCend paths. Such attributes
are similar to key patterns in XSD [13] and are more flexible, often more pow-
erful, than the built in XCend keys. Elements can not only be selected by their
keys but also by isomorphic names, which is more intuitive than using keys.
Multiple isomorphic names, even with different scopes, may exist within the
same element.

Procedures are generated in the binding class. Binding of manipulating pro-
cedures into additional classes follows the object-oriented paradigm and provides
this functionality directly in the objects that are manipulated. Parameters are
derived from the context provided by the object, which simplifies the signature
for these methods.

Static evaluation performed on procedure preconditions greatly increases
runtime performance of their checks. Iteration over free variables has been re-
duced to symbolic checking for all invalid keys. Without such a reduction, check
of free variables would not even be possible in an object oriented environment,
since an infinite set of keys would have to be tested. Only assertions with
free variables are evaluated inside such a loop. Incomplete evaluation further
increases efficiency of constraint evaluation.

Channeling manipulation access through specified procedures together with
precondition generation enables incremental maintenance of the schema invari-
ant and guarantees, that objects on the Java side adhere to integrity constraints
[9, 10]. No objects violating the schema invariant can be created with the bind-
ing.

A small case study indicates the results of this binding process to be prac-
tically applicable. While precondition generation takes quite some time, the
duration of the actual binding generation is negligible. No perceivable delays
were encountered during execution of procedures, which suggest that the steps
taken to increase performance of assertion evaluation are sufficient for at least
small to mid-sized applications.
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8.1 Future Work

This section explores some directions for extension of the presented binding.
This covers enhancement of the existing binding through further utility func-
tions, generation of other useful artifacts as well as extension of the source
language.

8.1.1 Generation of a Web-Based Frontend

The handwritten binding for the STAT System as described in Section 1.2 also
contains a web-based frontend for access and manipulation of data, using the
Wicket technology [1]. The generation of such a frontend can be automated as
well using heuristics to chose appropriate presentation techniques based on the
structure given by the schema and the reading and writing methods provided
by the designed binding. Since adherence to constraints is already guaranteed
by the binding, this is purely design effort.

8.1.2 Extensions to the Source Language

The current schema language in itself is already rather restrictive as described in
Section 2.2.1. Even further restrictions are made on the schema (see Section 3.1).
These constraints might limit usability and practicability of the schema language
- and therefore the binding - too far. Examples are the explicit naming of
elements, the necessity for keys, and missing choices over attributes. Also only
four basic types are provided and additional ones like booleans or floating point
values. Loosening of these constraints might make the language better suited
for it’s purpose, yet naturally complicate the binding and make it less intuitive.

Some of these extensions are purely syntactic sugar in the frontend and can
be easily realized. Others require adjustments in the XCend theory for pre-
condition generation and are not as trivial. Therefore, loosening of restrictions
should only be done after careful consideration of implications for binding and
theory and subsequent cost-benefit calculations concerning usability and under-
standability.

8.1.3 Further Heuristic Improvements

If the source language is not extended, several heuristic improvements could be
made in order to generate a more convenient binding. The necessity of explicit
naming leads to some unwanted elements in the generated binding. Examples
can easily be found in the schema definition of STATS. The explicit wrapping
of repeated elements can be removed (e.g. the map of account elements is
named after the surrounding accounts element and could be put directly into
stats instead of accounts). While this simplifies access in the binding, this
pattern should not be translated into generated XML documents. There, the
explicit wrapping is indeed desired, which allows better analysis in XML viewers.
Optional elements without contents can be replaced by boolean values (this is
for example the case with the admin element of accounts) and the methods
generated for these elements can be changed accordingly (i.e., isAdmin instead
of hasAdmin, no selection method). While this change is simpler, it is not clear
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if the user wants this behavior or it was really intended to have an empty child
element.

Such heuristics would improve usability of the generated binding, but it has
to be determined beforehand which modifications are done via heuristics and
which are integrated into the source language.

Some of the heuristics already implemented did prove to be insufficient for
larger specifications such as STATS, mainly the new key heuristic, though it
is debatable, if this is a problem of the heuristic being not liberal enough or
the precondition generator not providing sufficient simplification. New keys
generated by the prototype are not locally unique, but globally. While this does
not influence correctness of the binding, reducing this to locally unique keys
would increase performance not only in terms of key size but also free variable
iteration, since several locally unique key values would coincide and the merged
key set will be smaller.
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